Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 11(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35956490

ABSTRACT

Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.

2.
Environ Sci Pollut Res Int ; 25(11): 10555-10566, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29372518

ABSTRACT

The eco-friendly management of mosquitoes with novel and effective larvicides and oviposition deterrents is a crucial challenge to prevent outbreaks of mosquito-borne diseases. However, most of the herbal formulations tested in these years showed LC50 values higher of 40 ppm, and significant oviposition deterrent activity only when tested at relatively higher doses (> 50 µg/ml). Herein, we studied the chemical composition of the Galinsoga parviflora essential oil (EO). This plant is an annual herb native to South America naturalized all over the world. We tested the EO larvicidal and oviposition deterrent action on 6 mosquito species. Totally 37 compounds were identified in the EO of G. parviflora by GC and GC-MS analyses. The major constituent was (Z)-γ-bisabolene (38.9%). The G. parviflora EO and (Z)-γ-bisabolene showed acute toxicity on An. stephensi (LC50 = 31.04 and 2.04 µg/ml, respectively), Ae. aegypti (LC50 = 34.22 and 2.26 µg/ml, respectively), Cx. quinquefasciatus (LC50 = 37.10 and 2.47 µg/ml, respectively), An. subpictus (LC50 = 40.97 and 4.09 µg/ml, respectively), Ae. albopictus (LC50 = 45.55 and 4.50 µg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 49.56 and 4.87 µg/ml, respectively) larvae. Furthermore, the oviposition deterrent potential of the G. parviflora EO and (Z)-γ-bisabolene was studied on six mosquito vectors, showing that 25 µg/ml of (Z)-γ-bisabolene led to an Oviposition Activity Index lower of - 0.79 in all tested mosquito vectors. Overall, all larvicidal LC50 values estimated for (Z)-γ-bisabolene were lower than 5 µg/ml. This result far encompasses current evidences of toxicity reported for the large majority of botanical products currently tested against mosquito young instars, allowing us to propose this compound as an highly effective mosquito larvicide and oviposition deterrent.


Subject(s)
Asteraceae/drug effects , Larva/drug effects , Mosquito Vectors/drug effects , Oviposition/drug effects , Animals , Female , Gas Chromatography-Mass Spectrometry , Insecticides/analysis , Insecticides/chemistry , Mosquito Vectors/chemistry , Oils, Volatile/chemistry , Sesquiterpenes , South America
SELECTION OF CITATIONS
SEARCH DETAIL