Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hyg Environ Health ; 257: 114341, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442666

ABSTRACT

Water, Sanitation, and Hygiene (WaSH) interventions are the most effective in reducing diarrheal disease severity and prevalence. However, very few studies have investigated the effectiveness of WaSH intervention in reducing pathogen presence and concentration. In this study, we employed a microfluidic PCR approach to quantify twenty bacterial pathogens in water (n = 360), hands (n = 180), and fomite (n = 540) samples collected in rural households of Nepal to assess the pathogen exposures and the effect of WaSH intervention on contamination and exposure rates. The pathogen load and the exposure pathways for each pathogen in intervention and control villages were compared to understand the effects of WaSH intervention. Pathogens were detected in higher frequency and concentration from fomites samples, toilet handle (21.42%; 5.4,0 95%CI: mean log10 of 4.69, 5.96), utensils (23.5%; 5.47, 95%CI: mean log10 of 4.77, 6.77), and water vessels (22.42%; 5.53, 95%CI: mean log10 of 4.79, 6.60) as compared to cleaning water (14.36%; 5.05, 95%CI: mean log10 of 4.36, 5.89), drinking water (14.26%; 4.37, 85%CI: mean log10 of 4.37, 5.87), and hand rinse samples (16.92%; 5.49, 95%CI: mean log10 of 4.77, 6.39). There was no clear evidence that WaSH intervention reduced overall pathogen contamination in any tested pathway. However, we observed a significant reduction (p < 0.05) in the prevalence, but not concentration, of some target pathogens, including Enterococcus spp. in the intervention village compared to the control village for water and hands rinse samples. Conversely, no significant reduction in target pathogen concentration was observed for water and hand rinse samples. In swab samples, there was a reduction mostly in pathogen concentration rather than pathogen prevalence, highlighting that a reduction in pathogen prevalence was not always accompanied by a reduction in pathogen concentration. This study provides an understanding of WaSH intervention on microbe concentrations. Such data could help with better planning of intervention activities in the future.


Subject(s)
Drinking Water , Sanitation , Fomites , Water , Nepal/epidemiology , Hygiene
2.
Sci Total Environ ; 877: 162867, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36931512

ABSTRACT

Disaster-induced displacement often causes people to live in temporary settlements that have limited infrastructure and access to water, sanitation, and hygiene (WaSH). Reducing the risk of diarrheal diseases in such situations requires knowing how housing influences the presence of pathogens in water and the interaction between human settlements and exposure to pathogens. A cross-sectional study was conducted in May 2017 in two communities hard-hit by the Nepal 2015 earthquake: one recovered with newly reconstructed houses, and one recovered with residents still living in sheet metal temporary shelters constructed after the earthquake. We collected 60 water (30 drinking water and 30 cleaning water), 30 hand rinse, and 90 environmental swab samples (30 toilet handles, 30 utensils, and 30 water vessels) from selected households in each location and quantified 22 bacterial pathogens using microfluidic quantitative polymerase chain reaction (mfqPCR). A total of 59 samples were randomly selected for amplicon-based sequencing of the 16S rRNA, and it identified bacterial community profiles between these two settlements and their association with target genes of pathogenic bacteria. Target genes like uidA of Escherichia coli and the mip gene of Legionella pnuemophila showed significantly high frequency in specific sample types in temporary settlements than in permanent settlements. A significantly high concentration was observed in temporary settlements for Enterococcus spp. and S. typhimurium, specifically in swab samples. There was a sharp distinction of microbial community profiles between water and hand rinse samples with environmental swab samples, with a large abundance of potentially pathogenic bacteria in swab samples in both settlements. This observation highlighted that fomite could be an important transmission route for pathogens in rural settings and designing key interventions to target different stages of transmission pathways is essential. Overall findings from this study suggest that the recovered settlement with higher quality housing may be less impacted by fecal contamination than recovering settlements and that interventions should be designed to disrupt multiple transmission pathways to reduce pathogen exposure.


Subject(s)
Drinking Water , Earthquakes , Humans , Sanitation , Water , Nepal , Cross-Sectional Studies , RNA, Ribosomal, 16S , Hygiene , Drinking Water/microbiology , Bacteria , Escherichia coli
SELECTION OF CITATIONS
SEARCH DETAIL
...