Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Rep ; 34(3): 108635, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472076

ABSTRACT

The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.


Subject(s)
NEDD8 Protein/metabolism , Proteome/metabolism , Catalytic Domain , Cell Nucleolus/metabolism , Endopeptidases/metabolism , HCT116 Cells , Humans , NEDD8 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism
3.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33091110

ABSTRACT

α-Synuclein (α-syn) and tau aggregates are the neuropathological hallmarks of Parkinson's disease (PD) and Alzheimer's disease (AD), respectively, although both pathologies co-occur in patients with these diseases, suggesting possible crosstalk between them. To elucidate the interactions of pathological α-syn and tau, we sought to model these interactions. We show that increased accumulation of tau aggregates occur following simultaneous introduction of α-syn mousepreformed fibrils (mpffs) and AD lysate-derived tau seeds (AD-tau) both in vitro and in vivo. Interestingly, the absence of endogenous mouse α-syn in mice reduces the accumulation and spreading of tau, while the absence of tau did not affect the seeding or spreading capacity of α-syn. These in vivo results are consistent with our in vitro data wherein the presence of tau has no synergistic effects on α-syn. Our results point to the important role of α-syn as a modulator of tau pathology burden and spreading in the brains of AD, PDD, and DLB patients.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Brain/pathology , Mice , Mice, Knockout , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/genetics , tau Proteins/genetics
4.
Cell Rep ; 33(9): 108418, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264628

ABSTRACT

Neurodegenerative diseases are characterized by the formation and propagation of protein aggregates, especially amyloid fibrils. However, what normally suppresses protein misfolding and aggregation in metazoan cells remains incompletely understood. Here, we show that TRIM11, a member of the metazoan tripartite motif (TRIM) family, both prevents the formation of protein aggregates and dissolves pre-existing protein deposits, including amyloid fibrils. These molecular chaperone and disaggregase activities are ATP independent. They enhance folding and solubility of normal proteins and cooperate with TRIM11 SUMO ligase activity to degrade aberrant proteins. TRIM11 abrogates α-synuclein fibrillization and restores viability in cell models of Parkinson's disease (PD). Intracranial adeno-associated viral delivery of TRIM11 mitigates α-synuclein-mediated pathology, neurodegeneration, and motor impairments in a PD mouse model. Other TRIMs can also function as ATP-independent molecular chaperones and disaggregases. Thus, we define TRIMs as a potent and multifunctional protein quality-control system in metazoa, which might be applied to treat neurodegenerative diseases.


Subject(s)
Parkinson Disease/genetics , Parkinson Disease/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Disease Models, Animal , Humans , Mice , Parkinson Disease/pathology , Protein Aggregates
5.
Neuron ; 105(2): 260-275.e6, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31759806

ABSTRACT

Studies have shown an overlap of Aß plaques, tau tangles, and α-synuclein (α-syn) pathologies in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) with dementia (PDD) patients, with increased pathological burden correlating with severity of cognitive and motor symptoms. Despite the observed co-pathology and concomitance of motor and cognitive phenotypes, the consequences of the primary amyloidogenic protein on the secondary pathologies remain poorly understood. To better define the relationship between α-syn and Aß plaques, we injected α-syn preformed fibrils (α-syn mpffs) into mice with abundant Aß plaques. Aß deposits dramatically accelerated α-syn pathogenesis and spread throughout the brain. Remarkably, hyperphosphorylated tau (p-tau) was induced in α-syn mpff-injected 5xFAD mice. Finally, α-syn mpff-injected 5xFAD mice showed neuron loss that correlated with the progressive decline of cognitive and motor performance. Our findings suggest a "feed-forward" mechanism whereby Aß plaques enhance endogenous α-syn seeding and spreading over time post-injection with mpffs.


Subject(s)
Lewy Body Disease/metabolism , Neurons/pathology , Plaque, Amyloid/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Cell Count , Cognitive Dysfunction/pathology , Humans , Lewy Body Disease/pathology , Mice , Motor Activity , Phosphorylation , alpha-Synuclein/administration & dosage
6.
Cell Rep ; 29(1): 212-224.e8, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31577950

ABSTRACT

Ubiquitin and ubiquitin-like chains are finely balanced by conjugating and de-conjugating enzymes. Alterations in this balance trigger the response to stress conditions and are often observed in pathologies. How such changes are detected is not well understood. We identify the HSP70 chaperone as a sensor of changes in the balance between mono- and poly-NEDDylation. Upon DNA damage, the induction of the de-NEDDylating enzyme NEDP1 restricts the formation of NEDD8 chains, mainly through lysines K11/K48. This promotes APAF1 oligomerization and apoptosis induction, a step that requires the HSP70 ATPase activity. HSP70 binds to NEDD8, and, in vitro, the conversion of NEDD8 chains into mono-NEDD8 stimulates HSP70 ATPase activity. This effect is independent of NEDD8 conjugation onto substrates. The study indicates that the NEDD8 cycle is a regulatory module of HSP70 function. These findings may be important in tumorigenesis, as we find decreased NEDP1 levels in hepatocellular carcinoma with concomitant accumulation of NEDD8 conjugates.


Subject(s)
Adenosine Triphosphatases/genetics , DNA Damage/genetics , Endopeptidases/genetics , HSP70 Heat-Shock Proteins/genetics , NEDD8 Protein/genetics , Amino Acid Sequence , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Female , Humans , Lysine/genetics , MCF-7 Cells , Mice , Ubiquitin/genetics
7.
Nat Commun ; 9(1): 4376, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30349034

ABSTRACT

Spatial management of stress-induced protein aggregation is an integral part of the proteostasis network. Protein modification by the ubiquitin-like molecule NEDD8 increases upon proteotoxic stress and it is characterised by the formation of hybrid NEDD8/ubiquitin conjugates. However, the biological significance of this response is unclear. Combination of quantitative proteomics with biological analysis shows that, during proteotoxic stress, NEDDylation promotes nuclear protein aggregation, including ribosomal proteins as a major group. This correlates with protection of the nuclear Ubiquitin Proteasome System from stress-induced dysfunction. Correspondingly, we show that NEDD8 compromises ubiquitination and prevents targeting and processing of substrates by the proteasome. Moreover, we identify HUWE1 as a key E3-ligase that is specifically required for NEDDylation during proteotoxic stress. The study reveals a specific role for NEDD8 in nuclear protein aggregation upon stress and is consistent with the concept that transient aggregate formation is part of a defence mechanism against proteotoxicity.


Subject(s)
NEDD8 Protein/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitins/metabolism , Blotting, Western , Cell Line, Tumor , HEK293 Cells , Humans , Microscopy, Fluorescence , NEDD8 Protein/genetics , Nuclear Proteins/genetics , Proteomics , Real-Time Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Ubiquitination/physiology , Ubiquitins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...