Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Blood Adv ; 5(3): 829-842, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33560396

ABSTRACT

Integrated molecular signals regulate cell fate decisions in the embryonic aortic endothelium to drive hematopoietic stem cell (HSC) generation during development. The G-protein-coupled receptor 56 (Gpr56, also called Adgrg1) is the most highly upregulated receptor gene in cells that take on hematopoietic fate and is expressed by adult bone marrow HSCs. Despite the requirement for Gpr56 in hematopoietic stem/progenitor cell (HS/PC) generation in zebrafish embryos and the highly upregulated expression of GPR56 in treatment-resistant leukemic patients, its function in normal mammalian hematopoiesis remains unclear. Here, we examine the role of Gpr56 in HS/PC development in Gpr56 conditional knockout (cKO) mouse embryos and Gpr knockout (KO) embryonic stem cell (ESC) hematopoietic differentiation cultures. Our results show a bias toward myeloid differentiation of Gpr56 cKO fetal liver HSCs and an increased definitive myeloid progenitor cell frequency in Gpr56KO ESC differentiation cultures. Surprisingly, we find that mouse Gpr97 can rescue Gpr56 morphant zebrafish hematopoietic generation, and that Gpr97 expression is upregulated in mouse Gpr56 deletion models. When both Gpr56 and Gpr97 are deleted in ESCs, no or few hematopoietic PCs (HPCs) are generated upon ESC differentiation. Together, our results reveal novel and redundant functions for these 2 G-protein coupled receptors in normal mammalian hematopoietic cell development and differentiation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Zebrafish , Animals , Cell Differentiation , Hematopoiesis/genetics , Hematopoietic Stem Cells , Humans , Mice , Receptors, G-Protein-Coupled/genetics , Zebrafish/genetics
2.
Cell Rep ; 31(6): 107627, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402290

ABSTRACT

Whereas hundreds of cells in the mouse embryonic aorta transdifferentiate to hematopoietic cells, only very few establish hematopoietic stem cell (HSC) identity at a single time point. The Gata2 transcription factor is essential for HSC generation and function. In contrast to surface-marker-based cell isolation, Gata2-based enrichment provides a direct link to the internal HSC regulatory network. Here, we use iterations of index-sorting of Gata2-expressing intra-aortic hematopoietic cluster (IAHC) cells, single-cell transcriptomics, and functional analyses to connect HSC identity to specific gene expression. Gata2-expressing IAHC cells separate into 5 major transcriptomic clusters. Iterative analyses reveal refined CD31, cKit, and CD27 phenotypic parameters that associate specific molecular profiles in one cluster with distinct HSC and multipotent progenitor function. Thus, by iterations of single-cell approaches, we identify the transcriptome of the first functional HSCs as they emerge in the mouse embryo and localize them to aortic clusters containing 1-2 cells.


Subject(s)
Hematopoietic Stem Cells/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Animals , Disease Models, Animal , Mice
3.
EMBO J ; 39(8): e104270, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32149421

ABSTRACT

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium in cluster structures that protrude into the embryonic aortic lumen. Although much is known about the molecular characteristics of the developing hematopoietic cells, we lack a complete understanding of their origin and the three-dimensional organization of the niche. Here, we use advanced live imaging techniques of organotypic slice cultures, clonal analysis, and mathematical modeling to show the two-step process of intra-aortic hematopoietic cluster (IACH) formation. First, a hemogenic progenitor buds up from the endothelium and undergoes division forming the monoclonal core of the IAHC. Next, surrounding hemogenic cells are recruited into the IAHC, increasing their size and heterogeneity. We identified the Notch ligand Dll4 as a negative regulator of the recruitment phase of IAHC. Blocking of Dll4 promotes the entrance of new hemogenic Gfi1+ cells into the IAHC and increases the number of cells that acquire HSC activity. Mathematical modeling based on our data provides estimation of the cluster lifetime and the average recruitment time of hemogenic cells to the cluster under physiologic and Dll4-inhibited conditions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Calcium-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Aorta/embryology , Calcium-Binding Proteins/genetics , Cell Division , Endothelial Progenitor Cells/physiology , Female , Hemangioblasts/physiology , Hematopoietic Stem Cells/physiology , Mice , Mice, Inbred C57BL , Models, Theoretical
4.
Stem Cell Reports ; 11(4): 1009-1020, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30197119

ABSTRACT

Mast cells are tissue-resident immune cells. Their overgrowth/overactivation results in a range of common distressing, sometimes life-threatening disorders, including asthma, psoriasis, anaphylaxis, and mastocytosis. Currently, drug discovery is hampered by use of cancer-derived mast cell lines or primary cells. Cell lines provide low numbers of mature mast cells and are not representative of in vivo mast cells. Mast cell generation from blood/bone marrow gives poor reproducibility, requiring 8-12 weeks of culture. Here we report a method for the rapid/robust production of mast cells from pluripotent stem cells (PSCs). An advantageous Gata2Venus reporter enriches mast cells and progenitors as they differentiate from PSCs. Highly proliferative mouse mast cells and progenitors emerge after 2 weeks. This method is applicable for rapid human mast cell generation, and could enable the production of sufficient numbers of physiologically relevant human mast cells from patient induced PSCs for the study of mast cell-associated disorders and drug discovery.


Subject(s)
Cell Culture Techniques/methods , GATA2 Transcription Factor/metabolism , Genes, Reporter , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Cells, Cultured , Humans , Mast Cells/cytology , Mast Cells/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Peptide Hydrolases/metabolism , Phenotype , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL