Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36649377

ABSTRACT

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Imatinib Mesylate , Leukocytes, Mononuclear/metabolism , Cell Death , Myeloid Cells/metabolism , Interleukin-1beta/metabolism
2.
STAR Protoc ; 2(2): 100407, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33855309

ABSTRACT

hTERT-RPE1 cells are genetically stable near diploid cells widely used to model cell division, DNA repair, or ciliogenesis in a non-transformed context. However, poor transfectability and limited homology-directed repair capacity hamper their amenability to gene editing. Here, we describe a protocol for rapid and efficient generation of diverse homozygous knockins. In contrast to other approaches, this strategy bypasses the need for molecular cloning. Our approach can also be applied to a variety of cell types including cancer and induced pluripotent stem cells (iPSCs).


Subject(s)
CRISPR-Cas Systems/genetics , Gene Knock-In Techniques/methods , Retinal Pigment Epithelium/cytology , Ribonucleoproteins/genetics , Cell Line , Gene Editing , Humans
3.
EMBO J ; 40(4): e104844, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33350486

ABSTRACT

Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDosome (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhibitor, MDM2. Here, we demonstrate that PIDD1 is recruited to mature centrosomes by the centriolar distal appendage protein ANKRD26. PIDDosome-dependent Caspase-2 activation requires not only PIDD1 centrosomal localization, but also its autoproteolysis. Following cytokinesis failure, supernumerary centrosomes form clusters, which appear to be necessary for PIDDosome activation. In addition, in the context of DNA damage, activation of the complex results from a p53-dependent elevation of PIDD1 levels independently of centrosome amplification. We propose that PIDDosome activation can in both cases be promoted by an ANKRD26-dependent local increase in PIDD1 concentration close to the centrosome. Collectively, these findings provide a paradigm for how centrosomes can contribute to cell fate determination by igniting a signalling cascade.


Subject(s)
CRADD Signaling Adaptor Protein/metabolism , Caspase 2/metabolism , Centrosome/metabolism , Cysteine Endopeptidases/metabolism , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , A549 Cells , CRADD Signaling Adaptor Protein/genetics , Caspase 2/genetics , Cell Differentiation , Cysteine Endopeptidases/genetics , DNA Damage , Death Domain Receptor Signaling Adaptor Proteins/genetics , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics
4.
Immunity ; 45(4): 761-773, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27692612

ABSTRACT

Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K+ efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K+ efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant.


Subject(s)
Inflammasomes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , RNA, Small Nuclear/pharmacology , Animals , Electron Transport Complex I/metabolism , Mice , NIMA-Related Kinases/metabolism , Quinone Reductases/metabolism , Reactive Oxygen Species/metabolism , Toll-Like Receptor 7/metabolism
5.
Cancer Cell ; 30(1): 75-91, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27411587

ABSTRACT

Since acute myeloid leukemia (AML) is characterized by the blockade of hematopoietic differentiation and cell death, we interrogated RIPK3 signaling in AML development. Genetic loss of Ripk3 converted murine FLT3-ITD-driven myeloproliferation into an overt AML by enhancing the accumulation of leukemia-initiating cells (LIC). Failed inflammasome activation and cell death mediated by tumor necrosis factor receptor caused this accumulation of LIC exemplified by accelerated leukemia onset in Il1r1(-/-), Pycard(-/-), and Tnfr1/2(-/-) mice. RIPK3 signaling was partly mediated by mixed lineage kinase domain-like. This link between suppression of RIPK3, failed interleukin-1ß release, and blocked cell death was supported by significantly reduced RIPK3 in primary AML patient cohorts. Our data identify RIPK3 and the inflammasome as key tumor suppressors in AML.


Subject(s)
Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/cytology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Cell Differentiation , Down-Regulation , Gene Expression Profiling/methods , Gene Expression Regulation, Leukemic , Humans , Inflammasomes/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Neoplasms, Experimental , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptors, Tumor Necrosis Factor/metabolism , Tumor Cells, Cultured
6.
Biochem J ; 455(2): 149-55, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23957380

ABSTRACT

Enzymes that produce or recycle folates are the targets of widely used antimalarial drugs. Despite the interest in the folate metabolism of Plasmodium falciparum, the molecular identification of ADCL (aminodeoxychorismate lyase), which synthesizes the p-aminobenzoate moiety of folate, remained unresolved. In the present study, we demonstrate that the plasmodial gene PF14_0557 encodes a functional ADCL and report a characterization of the recombinant enzyme.


Subject(s)
Folic Acid/biosynthesis , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , para-Aminobenzoates/metabolism , Animals , Computational Biology , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL