Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(37): eadh4184, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713487

ABSTRACT

Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis. Using a combination of fluorescent barcoding, mathematical modeling, metabolic analysis, and in vivo models, we show that the Allee effect, i.e., growth dependency on population size, is a feature of tumor lineages and that cooperative ecological interactions between lineages alleviate the Allee barriers to growth in a model of triple-negative breast cancer. Soluble metabolite exchange formed the basis for these cooperative interactions and catalyzed the establishment of a polyclonal community that displayed enhanced metastatic dissemination and outgrowth in xenograft models. Our results highlight interclonal metabolite exchange as a key modulator of tumor ecology and a contributing factor to overcoming Allee effect-associated growth barriers to metastasis.


Subject(s)
Coloring Agents , Triple Negative Breast Neoplasms , Humans , Animals , Disease Models, Animal , Population Density
3.
Nat Mater ; 22(5): 644-655, 2023 05.
Article in English | MEDLINE | ID: mdl-36581770

ABSTRACT

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Subject(s)
Actins , Neoplasms , DNA , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Cytosol/metabolism , Signal Transduction
5.
Cell Rep ; 40(8): 111256, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001966

ABSTRACT

Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging outcomes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen deposition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immunotherapy, and reduce its side effects.


Subject(s)
Fasting , Triple Negative Breast Neoplasms , B7-H1 Antigen/metabolism , Glycolysis , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
6.
Small ; 18(17): e2106097, 2022 04.
Article in English | MEDLINE | ID: mdl-35344274

ABSTRACT

Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Separation , Female , Humans , Lab-On-A-Chip Devices , Mice , Neoplastic Cells, Circulating/pathology , Prognosis
7.
Am J Gastroenterol ; 109(10): 1662-74, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25070052

ABSTRACT

OBJECTIVES: microRNAs (miRNAs) are short RNAs that regulate gene expression in various processes, including immune response. Altered immune response is a pivotal event in the pathogenesis of celiac disease (CD), and miRNAs could have a role in modulating both innate and adaptive response to gluten in celiac patients. METHODS: We compared miRNA profiles in duodenal biopsies of controls and CD patients by miRNA array. Differentially expressed miRNAs were validated in controls, Marsh 3A-B, and Marsh 3C patients by quantitative PCR (qPCR). Target gene expression was assessed by qPCR, western blotting, and immunohistochemistry, and the effect of gliadin was evaluated by in vitro stimulation experiments on duodenal biopsies. RESULTS: Seven miRNAs were identified as significantly downregulated in the duodenum of adult CD patients as compared with controls. qPCR validated the decreased expression of miR-192-5p, miR-31-5p, miR-338-3p, and miR-197, in particular in patients with more severe histological lesions (Marsh 3C). In silico analysis of possible miRNA targets identified several genes involved in innate and adaptive immunity. Among these, chemokine C-X-C motif ligand 2 (CXCL2) and NOD2 showed significantly increased mRNA and protein level in Marsh 3C patients and a significant inverse correlation with the regulatory miR-192-5p. In addition, forkhead box P3 (FOXP3), Run-related transcription factor 1, and interleukin-18 (targets of miR-31-5p, miR-338-3p, and miR-197, respectively) showed upregulation in CD patients. Furthermore, alterations in CXCL2 and NOD2, FOXP3, miR-192-5p, and miR-31-5p expression were triggered by gliadin exposure in CD patients. CONCLUSIONS: miRNA expression is significantly altered in duodenal mucosa of CD patients, and this alteration can increase the expression of molecules involved in immune response.


Subject(s)
Adaptive Immunity/physiology , Celiac Disease/genetics , Celiac Disease/immunology , Immunity, Innate/physiology , MicroRNAs/metabolism , Adult , Case-Control Studies , Celiac Disease/metabolism , Cohort Studies , Duodenum/metabolism , Duodenum/pathology , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Microarray Analysis , Middle Aged
8.
Am J Physiol Endocrinol Metab ; 291(4): E697-703, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16684857

ABSTRACT

Obese adolescents are at risk of developing NAFLD and type 2 diabetes. We measured noninvasively the IHF content of obese adolescents to ascertain whether it is associated with insulin resistance and abnormal energy homeostasis. IHF content, whole body energy homeostasis, insulin sensitivity, and body composition were measured using localized hepatic (1)H-MRS, indirect calorimetry, fasting-derived and 3-h-OGTT-derived surrogate indexes (HOMA2 and WBISI), and DEXA, respectively, in 54 obese adolescents (24 female and 30 male, age 13 +/- 2 yr, BMI >99th percentile for their age and sex). NAFLD (defined as IHF content >5% wet weight) was found in 16 individuals (30%) in association with higher ALT (P < 0.006), Hb A(1c) (P = 0.021), trunk fat content (P < 0.03), and lower HDL cholesterol (P < 0.05). Individuals with NAFLD had higher fasting plasma glucose (89 +/- 8 vs. 83 +/- 9 mg/dl, P = 0.01) and impaired insulin sensitivity (HOMA2 and WBISI, P < 0.05). Meanwhile, parameters of insulin secretion were unaffected. Their reliance on fat oxidation in the fasting state was lower (RQ 0.83 +/- 0.08 vs. 0.77 +/- 0.05, P < 0.01), and their ability to suppress it during the oral glucose challenge was impaired (P < 0.05) vs. those with normal IHF content. When controlling for trunk fat content, the correlation between IHF content and insulin sensitivity was weakened, whereas the correlation with fasting lipid oxidation was maintained. In conclusion, NAFLD is common in childhood obesity, and insulin resistance is present in association with increased trunk fat content. In contrast, the rearrangement of whole body substrate oxidation in these youngsters appeared to be an independent feature.


Subject(s)
Energy Metabolism/physiology , Fatty Liver/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Absorptiometry, Photon , Adolescent , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Body Composition/physiology , Calorimetry, Indirect , Child , Fatty Liver/complications , Fatty Liver/enzymology , Female , Glucose/metabolism , Glucose Tolerance Test , Homeostasis/physiology , Humans , Intra-Abdominal Fat/physiology , Magnetic Resonance Spectroscopy , Male , Obesity/complications , Obesity/enzymology , gamma-Glutamyltransferase/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...