Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 98(3): 261-273, 2020 09.
Article in English | MEDLINE | ID: mdl-32621347

ABSTRACT

Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a severe congenital visceral myopathy characterized by an abdominal distension due to a large non-obstructed urinary bladder, a microcolon and intestinal hypo- or aperistalsis. Most of the patients described to date carry a sporadic heterozygous variant in ACTG2. More recently, recessive forms have been reported and mutations in MYH11, LMOD1, MYLK and MYL9 have been described at the molecular level. In the present report, we describe five patients carrying a recurrent heterozygous variant in ACTG2. Exome sequencing performed in four families allowed us to identify the genetic cause in three. In two families, we identified variants in MMIHS causal genes, respectively a nonsense homozygous variant in MYH11 and a previously described homozygous deletion in MYL9. Finally, we identified compound heterozygous variants in a novel candidate gene, PDCL3, c.[143_144del];[380G>A], p.[(Tyr48Ter)];[(Cys127Tyr)]. After cDNA analysis, a complete absence of PDLC3 expression was observed in affected individuals, indicating that both mutated transcripts were unstable and prone to mediated mRNA decay. PDCL3 encodes a protein involved in the folding of actin, a key step in thin filament formation. Presumably, loss-of-function of this protein affects the contractility of smooth muscle tissues, making PDCL3 an excellent candidate gene for autosomal recessive forms of MMIHS.


Subject(s)
Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Colon/abnormalities , Genetic Predisposition to Disease , Intestinal Pseudo-Obstruction/genetics , Nerve Tissue Proteins/genetics , Urinary Bladder/abnormalities , Abnormalities, Multiple/pathology , Aborted Fetus , Actins/genetics , Colon/pathology , Female , Homozygote , Humans , Infant, Newborn , Intestinal Pseudo-Obstruction/pathology , Male , Mutation/genetics , Myosin Heavy Chains/genetics , Myosin Light Chains/genetics , Pedigree , Urinary Bladder/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...