Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980441

ABSTRACT

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Neurodegenerative Diseases , Humans , ADAM10 Protein/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Prion Proteins/metabolism , Membrane Proteins/metabolism , Brain/metabolism , Brain/pathology , Antibodies
2.
Front Immunol ; 15: 1425892, 2024.
Article in English | MEDLINE | ID: mdl-39035004

ABSTRACT

Microglia play a crucial role in maintaining homeostasis of the central nervous system and they are actively involved in shaping the brain's inflammatory response to stress. Among the multitude of involved molecules, purinergic receptors and enzymes are of special importance due to their ability to regulate microglia activation. By investigating the mechanisms underlying microglial responses and dysregulation, researchers can develop more precise interventions to modulate microglial behavior and alleviate neuroinflammatory processes. Studying gene function selectively in microglia, however, remains technically challenging. This review article provides an overview of adeno-associated virus (AAV)-based microglia targeting approaches, discussing potential prospects for refining these approaches to improve both specificity and effectiveness and encouraging future investigations aimed at connecting the potential of AAV-mediated microglial targeting for therapeutic benefit in neurological disorders.


Subject(s)
Dependovirus , Genetic Vectors , Microglia , Dependovirus/genetics , Humans , Microglia/metabolism , Genetic Vectors/genetics , Animals , Genetic Therapy/methods
3.
Nat Commun ; 15(1): 4728, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830864

ABSTRACT

Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.


Subject(s)
Camelids, New World , Immunoglobulin Heavy Chains , Mice, Transgenic , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Animals , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Camelids, New World/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mice , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Immunoglobulin E/immunology , Humans , Dependovirus/genetics , Dependovirus/immunology , Immunoglobulin G/immunology , COVID-19/immunology , B-Lymphocytes/immunology
4.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769196

ABSTRACT

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Subject(s)
Brain Ischemia , Brain , Cystatin C , Extracellular Vesicles , Mice, Inbred C57BL , Synapses , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Cystatin C/metabolism , Synapses/metabolism , Mice , Male , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/metabolism , Brain/pathology , Proteomics/methods , Synaptosomes/metabolism , Neurons/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/therapy , Cells, Cultured , Disease Models, Animal
5.
Clin Exp Rheumatol ; 42(4): 852-858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607682

ABSTRACT

OBJECTIVES: Prospective long-term observational data on the disease course of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) were missing in Germany to date. Therefore, the Joint Vasculitis Registry in German-speaking countries (GeVas) has been established to follow the course of patients with AAV. The aim of this study is to present baseline data of patients with newly diagnosed and relapsing AAV enrolled in the GeVas registry. METHODS: GeVas is a prospective, web-based, multicentre, clinician-driven registry for the documentation of organ manifestations, damage, long-term outcomes, and therapy regimens in various types of vasculitis. Recruitment started in June 2019. RESULTS: Between June 2019 and October 2022, 266 patients with AAV were included in the GeVas registry: 173 (65%) with new-onset and 93 (35%) with relapsing AAV. One hundred and sixty-two (61%) patients were classified as granulomatosis with polyangiitis (GPA), 66 (25%) as microscopic polyangiitis (MPA), 36 (13%) as eosinophilic granulomatosis with polyangiitis (EGPA), and 2 (1%) as renal limited AAV. The median age was 59 years (51-70 years, IQR), 130 (51%) patients were female. Most patients were ANCA positive (177; 67%) and affected by general symptoms, pulmonary, ear nose throat (ENT), renal and neurological involvement. For induction of remission, the majority of patients received glucocorticoids (247, 93%) in combination with either rituximab (118, 45%) or cyclophosphamide (112, 42%). CONCLUSIONS: Demographic characteristics are comparable to those in other European countries. Differences were found regarding ANCA status, frequencies of organ manifestations, and therapeutic regimens. The GeVas registry will allow longitudinal observations and prospective outcome measures in AAV.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Registries , Humans , Female , Middle Aged , Male , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Aged , Prospective Studies , Germany/epidemiology , Immunosuppressive Agents/therapeutic use , Treatment Outcome , Granulomatosis with Polyangiitis/drug therapy , Granulomatosis with Polyangiitis/epidemiology , Granulomatosis with Polyangiitis/diagnosis , Granulomatosis with Polyangiitis/immunology , Granulomatosis with Polyangiitis/therapy , Recurrence , Microscopic Polyangiitis/epidemiology , Microscopic Polyangiitis/drug therapy , Microscopic Polyangiitis/diagnosis , Microscopic Polyangiitis/therapy , Microscopic Polyangiitis/immunology , Churg-Strauss Syndrome/epidemiology , Churg-Strauss Syndrome/drug therapy , Churg-Strauss Syndrome/diagnosis , Churg-Strauss Syndrome/immunology , Disease Progression , Time Factors , Rituximab/therapeutic use
6.
Clin Exp Rheumatol ; 42(4): 895-904, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683207

ABSTRACT

OBJECTIVES: Giant cell arteritis (GCA) is one of the most common forms of vasculitis. There is an abundance of studies which are conducted in a randomised controlled trial setting but limited with respect to cohort size and follow-up time. GeVas is the first large-scale registry for vasculitides in German-speaking countries that enables to evaluate this rare disease. Herein we focus on the subgroup of GCA patients including follow-up data up to one year. METHODS: GeVas is a prospective, web-based, multicentre registry for the documentation of organ manifestations, outcomes, and therapy regimens in vasculitides. Recruitment started in June 2019. By April 2023, 15 centres were initiated and have started to enrol patients. RESULTS: After 4 years, 195 GCA-patients were included in the registry, of which 64% were female and 36% were male. The average age was 76 years at the time of recruitment (IQR=69-82). Seventy-nine percent were included in the registry because of a newly diagnosed GCA and 21% because of a relapse. At the first assessment most of the patients (89%) described general symptoms. Thirty-one percent stated ocular symptoms. Cranial symptoms were documented in 78% of the cases. All patients were documented with immunosuppressive treatment at start, of whom 95% received prednisolone, 16% cyclophosphamide, 20% methotrexate, and 48% tocilizumab. After three months 62% and after one year 91% of the patients achieved remission. CONCLUSIONS: Regarding demographics, clinical manifestations and diagnostics, our study showed a similar composition compared to other studies. However, our data differed in terms of treatment regimens.


Subject(s)
Giant Cell Arteritis , Immunosuppressive Agents , Registries , Humans , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/epidemiology , Giant Cell Arteritis/diagnosis , Male , Female , Aged , Aged, 80 and over , Prospective Studies , Immunosuppressive Agents/therapeutic use , Germany/epidemiology , Treatment Outcome , Time Factors , Recurrence
7.
Front Immunol ; 15: 1328306, 2024.
Article in English | MEDLINE | ID: mdl-38590528

ABSTRACT

CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.


Subject(s)
Single-Domain Antibodies , Humans , Single-Domain Antibodies/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Monophosphate , Adenosine Diphosphate/metabolism
8.
Brain Behav Immun ; 116: 269-285, 2024 02.
Article in English | MEDLINE | ID: mdl-38142915

ABSTRACT

Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.


Subject(s)
Microglia , Spinal Cord Injuries , Animals , Female , Humans , Male , Mice , Central Nervous System/metabolism , Cytokines/metabolism , Microglia/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Spinal Cord Injuries/metabolism
9.
Life (Basel) ; 13(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37511965

ABSTRACT

Homoarginine is associated with cardio- and cerebrovascular morbidity and mortality. However, the underlying pathomechanisms remain elusive. Here, we evaluated the association of homoarginine with adverse events (i.e., death, stroke, and myocardial infarction) and carotid intima-media thickness (cIMT) in stroke patients. In the prospective bioMARKers in STROKE (MARK-STROKE) cohort, patients with acute ischemic stroke or transient ischemic attack (TIA) were enrolled. Plasma homoarginine concentrations were analyzed and associated with clinical phenotypes in cross-sectional (374 patients) and prospective (273 patients) analyses. Adjustments for possible confounders were evaluated. A two-fold increase in homoarginine was inversely associated with the National Institutes of Health Stroke Scale (NIHSS) score at admission, cIMT, and prevalent atrial fibrillation (mean factor -0.68 [95% confidence interval (CI): -1.30, -0.07], -0.14 [95% CI: -0.22, -0.05]; and odds ratio 0.57 [95% CI: 0.33, 0.96], respectively). During the follow-up (median 284 [25th, 75th percentile: 198, 431] days), individuals with homoarginine levels in the highest tertile had fewer incident events compared with patients in the lowest homoarginine tertile independent of traditional risk factors (hazard ratio 0.22 [95% CI: 0.08, 0.63]). A lower prevalence of atrial fibrillation and a reduced cIMT pinpointed potential underlying pathomechanisms.

11.
Brain Commun ; 5(2): fcad090, 2023.
Article in English | MEDLINE | ID: mdl-37056478

ABSTRACT

Multiple consensus statements have called for preclinical randomized controlled trials to improve translation in stroke research. We investigated the efficacy of an interleukin-17A neutralizing antibody in a multi-centre preclinical randomized controlled trial using a murine ischaemia reperfusion stroke model. Twelve-week-old male C57BL/6 mice were subjected to 45 min of transient middle cerebral artery occlusion in four centres. Mice were randomly assigned (1:1) to receive either an anti-interleukin-17A (500 µg) or isotype antibody (500 µg) intravenously 1 h after reperfusion. The primary endpoint was infarct volume measured by magnetic resonance imaging three days after transient middle cerebral artery occlusion. Secondary analysis included mortality, neurological score, neutrophil infiltration and the impact of the gut microbiome on treatment effects. Out of 136 mice, 109 mice were included in the analysis of the primary endpoint. Mixed model analysis revealed that interleukin-17A neutralization significantly reduced infarct sizes (anti-interleukin-17A: 61.77 ± 31.04 mm3; IgG control: 75.66 ± 34.79 mm3; P = 0.01). Secondary outcome measures showed a decrease in mortality (hazard ratio = 3.43, 95% confidence interval = 1.157-10.18; P = 0.04) and neutrophil invasion into ischaemic cortices (anti-interleukin-17A: 7222 ± 6108 cells; IgG control: 28 153 ± 23 206 cells; P < 0.01). There was no difference in Bederson score. The analysis of the gut microbiome showed significant heterogeneity between centres (R = 0.78, P < 0.001, n = 40). Taken together, neutralization of interleukin-17A in a therapeutic time window resulted in a significant reduction of infarct sizes and mortality compared with isotype control. It suggests interleukin-17A neutralization as a potential therapeutic target in stroke.

12.
J Neural Transm (Vienna) ; 130(6): 755-762, 2023 06.
Article in English | MEDLINE | ID: mdl-37067597

ABSTRACT

Blood neurofilament light chain (NfL) is an easily accessible, highly sensitive and reliable biomarker for neuroaxonal damage. Currently, its role in Parkinson's disease (PD) remains unclear. Here, we demonstrate that blood NfL can distinguish idiopathic PD from atypical parkinsonian syndromes (APS) with high sensitivity and specificity. In cross-sectional studies, some found significant correlations between blood NfL with motor and cognitive function, whereas others did not. In contrast, prospective studies reported very consistent associations between baseline blood NfL with motor progression and cognitive worsening. Amongst PD subtypes, especially postural instability and gait disorder (PIGD) subtype, symptoms and scores are reliably linked with blood NfL. Different non-motor PD comorbidities have also been associated with high blood NfL levels suggesting that the neuroaxonal damage of the autonomic nervous system as well as serotonergic, cholinergic and noradrenergic neurons is quantifiable. Numerous absolute NfL cutoff levels have been suggested in different cohort studies; however, validation across cohorts remains weak. However, age-adjusted percentiles and intra-individual blood NfL changes might represent more valid and consistent parameters compared with absolute NfL concentrations. In summary, blood NfL has the potential as biomarker in PD patients to be used in clinical practice for prediction of disease severity and especially progression.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Prospective Studies , Cross-Sectional Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers
13.
Semin Immunopathol ; 45(3): 347-365, 2023 05.
Article in English | MEDLINE | ID: mdl-36917241

ABSTRACT

In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.


Subject(s)
Adenosine Triphosphate , Ischemic Stroke , Humans , Adenosine , Inflammation , Signal Transduction
14.
Cell Death Dis ; 14(1): 16, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635255

ABSTRACT

In multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, both resident microglia and infiltrating macrophages contribute to demyelination as well as spontaneous remyelination. Nevertheless, the specific roles of microglia versus macrophages are unknown. We investigated the influence of microglia in EAE using the colony stimulating factor 1 receptor (CSF-1R) inhibitor, PLX5622, to deplete microglial population and Ccr2RFP/+ fmsEGFP/+ mice, to distinguish blood-derived macrophages from microglia. PLX5622 treatment depleted microglia and meningeal macrophages, and provoked a massive infiltration of CCR2+ macrophages into demyelinating lesions and spinal cord parenchyma, albeit it did not alter EAE chronic phase. In contrast, microglia and meningeal macrophages depletion reduced the expression of major histocompatibility complex II and CD80 co-stimulatory molecule in dendritic cells, macrophages and microglia. In addition, it diminished T cell reactivation and proliferation in the spinal cord parenchyma, inducing a significant delay in EAE onset. Altogether, these data point to a specific role of CNS microglia and meningeal macrophages in antigen presentation and T cell reactivation at initial stages of EAE.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Microglia/metabolism , Macrophages/metabolism , Multiple Sclerosis/metabolism , Spinal Cord/pathology , Mice, Inbred C57BL
15.
Mucosal Immunol ; 16(2): 180-193, 2023 04.
Article in English | MEDLINE | ID: mdl-36634819

ABSTRACT

The blockade or deletion of the pro-inflammatory P2X7 receptor channel has been shown to reduce tissue damage and symptoms in models of inflammatory bowel disease, and P2X7 receptors on enteric neurons were suggested to mediate neuronal death and associated motility changes. Here, we used P2X7-specific antibodies and nanobodies, as well as a bacterial artificial chromosome transgenic P2X7-EGFP reporter mouse model and P2rx7-/- controls to perform a detailed analysis of cell type-specific P2X7 expression and possible overexpression effects in the enteric nervous system of the distal colon. In contrast to previous studies, we did not detect P2X7 in neurons but found dominant expression in glia and macrophages, which closely interact with the neurons. The overexpression of P2X7 per se did not induce significant pathological effects. Our data indicate that macrophages and/or glia account for P2X7-mediated neuronal damage in inflammatory bowel disease and provide a refined basis for the exploration of P2X7-based therapeutic strategies.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Colitis/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Neurons , Inflammatory Bowel Diseases/metabolism , Mice, Transgenic , Macrophages/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
16.
Neurology ; 100(7): e671-e682, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36270895

ABSTRACT

BACKGROUND AND OBJECTIVES: Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction at the neuromuscular junction. Treatment frequently includes corticosteroids (CSs) and IV immunoglobulin (IVIG). This study was conducted to determine whether immune globulin (human), 10% caprylate/chromatography purified (IGIV-C) could facilitate CS dose reduction in CS-dependent patients with MG. METHODS: In this randomized double-blind placebo-controlled trial, CS-dependent patients with MG (Myasthenia Gravis Foundation of America Class II-Iva; AChR+) received a loading dose of 2 g/kg IGIV-C over 2 days (maximum 80 g/d) or placebo at week 0 (baseline). Maintenance doses (1 g/kg IGIV-C or placebo) were administered every 3 weeks through week 36. Tapering of CS was initiated at week 9 and continued through week 36 unless the patient worsened (quantitative MG score ≥4 points from baseline). CS doses were increased (based on the current CS dose) in patients who worsened. Patients were withdrawn if worsening failed to improve within 6 weeks or if a second CS increase was required. The primary efficacy end point (at week 39) was a ≥50% reduction in CS dose. Secondary and safety end points were assessed throughout the study and follow-up (weeks 42 and 45). The study results and full protocol are available at clinicaltrials.gov/ct2/show/NCT02473965. RESULTS: The primary end point (≥50% reduction in CS dose) showed no significant difference between the IGIV-C treatment (60.0% of patients) and placebo (63.3%). There were no significant differences for secondary end points. Safety data indicated that IGIV-C was well tolerated. DISCUSSION: In this study, IGIV-C was not more effective than placebo in reducing daily CS dose. These results suggest that the effects of IGIV-C and CS are not synergistic and may be mechanistically different. TRIAL REGISTRATION INFORMATION: The trial was registered on clinicaltrialsregister.eu (EudraCT #: 2013-005099-17) and clinicaltrials.gov (identifier NCT02473965). CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that IVIG infusions in adult patients with MG do not increase the percentage of patients achieving a ≥50% reduction in corticosteroid dose compared with placebo.


Subject(s)
Immunoglobulins, Intravenous , Myasthenia Gravis , Adult , Humans , Immunoglobulins, Intravenous/therapeutic use , Myasthenia Gravis/drug therapy , Double-Blind Method , Adrenal Cortex Hormones/therapeutic use , Treatment Outcome
17.
Front Immunol ; 13: 1012534, 2022.
Article in English | MEDLINE | ID: mdl-36341324

ABSTRACT

Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.


Subject(s)
Neoplasms , Tumor Microenvironment , Mice , Animals , Adenosine Triphosphate/metabolism , Adenosine , Oxaliplatin
18.
J Neuroinflammation ; 19(1): 256, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224611

ABSTRACT

BACKGROUND: Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to effectively block the P2X7 channel. METHODS: Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1ß release after incubation with the P2X7-specific nbs. RESULTS: Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a significantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1ß release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting (FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicating insufficient crossing of the blood-brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs or the isotype nbs. After icv injection of 30 µg of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia and reduced stroke size. CONCLUSION: Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage.


Subject(s)
Receptors, Purinergic P2 , Single-Domain Antibodies , Stroke , Adenosine Triphosphate/pharmacology , Animals , Calcium/metabolism , Caspase 1/metabolism , Infarction, Middle Cerebral Artery/pathology , Interleukin-1beta/metabolism , Mice , Microglia/metabolism , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X7/metabolism , Single-Domain Antibodies/metabolism , Stroke/metabolism
19.
Front Pharmacol ; 13: 1029236, 2022.
Article in English | MEDLINE | ID: mdl-36299894

ABSTRACT

The P2X7 ion channel is a key sensor for extracellular ATP and a key trigger of sterile inflammation. Intravenous injection of nanobodies that block P2X7 has shown to be beneficial in mouse models of systemic inflammation. P2X7 has also emerged as an attractive therapeutic target for inflammatory brain diseases. However, little is known about the ability of nanobodies to cross the BBB. Here we evaluated the ability of P2X7-specific nanobodies to reach and to block P2X7 on microglia following intravenous or intracerebral administration. For this study, we reformatted and sequence-optimized P2X7 nanobodies for higher stability and elevated isoelectric point. Following injection of nanobodies or nanobody-encoding adeno-associated viral vectors (AAV), we monitored the occupancy and blockade of microglial P2X7 in vivo using ex vivo flow cytometry. Our results show that P2X7 on microglia was within minutes completely occupied and blocked by intracerebroventricularly injected nanobodies, even at low doses. In contrast, very high doses were required to achieve similar effects when injected intravenously. The endogenous production of P2X7-antagonistic nanobodies following intracerebral or intramuscular injection of nanobody-encoding AAVs resulted in a long-term occupancy and blockade of P2X7 on microglia. Our results provide new insights into the conditions for the delivery of nanobodies to microglial P2X7 and point to AAV-mediated delivery of P2X7 nanobodies as a promising strategy for the treatment of sterile brain inflammation.

20.
Eur J Immunol ; 52(11): 1805-1818, 2022 11.
Article in English | MEDLINE | ID: mdl-36178227

ABSTRACT

Extracellular ATP activates the P2X7 receptor, leading to inflammasome activation and release of pro-inflammatory cytokines in monocytes. However, a detailed analysis of P2X7 receptor expression and function in the human T cell compartment has not been reported. Here, we used a P2X7-specific nanobody to assess cell membrane expression and function of P2X7 on peripheral T lymphocyte subsets. The results show that innate-like T cells, which effectively react to innate stimuli by secreting high amounts of pro-inflammatory cytokines, have the highest expression of P2X7 in the human T cell compartment. Using Tγδ cells as example for an innate-like lymphocyte population, we demonstrate that these cells are more sensitive to P2X7 receptor activation than conventional T cells, affecting fundamental cellular mechanisms like calcium signaling and ATP-induced cell death. The increased susceptibility of innate-like T cells to P2X7-mediated cell death provides a mechanism to control their homeostasis under inflammatory conditions. Understanding the expression and function of P2X7 on human immune cells is essential to assume the benefits and consequences of newly developed P2X7-based therapeutic approaches.


Subject(s)
Adenosine Triphosphate , Receptors, Purinergic P2X7 , Humans , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/metabolism , Cell Death , Monocytes/metabolism , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL