Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Chem Biol ; 13(5): 486-493, 2017 05.
Article in English | MEDLINE | ID: mdl-28244987

ABSTRACT

The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.


Subject(s)
Proteasome Inhibitors/pharmacology , Quinolines/pharmacology , Trans-Activators/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Quinolines/chemistry , Structure-Activity Relationship , Trans-Activators/metabolism
2.
Nat Med ; 22(1): 37-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26642438

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR-δ activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR-δ activation may be beneficial in HD and related disorders.


Subject(s)
Huntington Disease/genetics , Neostriatum/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Cell Death/drug effects , Chromatin Immunoprecipitation , Disease Models, Animal , Gene Expression Profiling , HEK293 Cells , Humans , Huntingtin Protein , Huntington Disease/metabolism , In Vitro Techniques , Induced Pluripotent Stem Cells , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , Movement/drug effects , Nerve Tissue Proteins/metabolism , Neurons/drug effects , PPAR delta/genetics , PPAR delta/metabolism , Piperazines/pharmacology , Real-Time Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/agonists , Sulfonamides/pharmacology
3.
J Biomol Screen ; 20(10): 1232-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26265713

ABSTRACT

Endoplasmic reticulum (ER) stress activates three distinct signal transducers on the ER membrane. Inositol-requiring protein 1 (IRE1), the most conserved signal transducer, plays a key role in ER stress-mediated signaling. During ER stress, IRE1 initiates two discrete signaling cascades: the "adaptive" signaling cascade mediated by the XBP1 pathway and the "alarm" signaling cascade mediated by stress-activated protein kinase pathways. Fine-tuning of the balance between the adaptive and alarm signals contributes significantly to cellular fate under ER stress. Thus, we propose that the design of high-throughput screening (HTS) assays to selectively monitor IRE1 mediated-signaling would be desirable for drug discovery. To this end, we report the generation of stable human neural cell lines and development of cell-based HTS luciferase (Luc) reporter gene assays for the identification of pathway-specific chemical modulators of IRE1. We implemented a cell-based Luc assay using a chimeric CHOP-Gal4 transcription factor in 384-well format for monitoring IRE1 kinase-mediated p38MAPK activation and an unfolded response pathway element (URPE)-Luc cell-based assay in 1536-well format for monitoring IRE1's RNase-mediated activation of XBP1. Chemical library screening was successfully conducted with both the CHOP/Gal4-Luc cells and UPRE-Luc engineered cells. The studies demonstrate the feasibility of using these HTS assays for discovery of pathway-selective modulators of IRE1.


Subject(s)
Endoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/physiology , Enzyme Activation , Genes, Reporter , HeLa Cells , Humans , Luciferases/analysis , Luciferases/genetics , MAP Kinase Signaling System , Neurons , Protein Serine-Threonine Kinases/physiology , Regulatory Factor X Transcription Factors , Thapsigargin/metabolism , Transcription Factors/metabolism , X-Box Binding Protein 1
4.
ACS Chem Neurosci ; 6(3): 464-75, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25544056

ABSTRACT

Endoplasmic reticulum (ER) stress causes neuronal dysfunction followed by cell death and is recognized as a feature of many neurodegenerative diseases. Using a phenotypic screen, we recently identified benzodiazepinone derivatives that reduce ER stress-mediated apoptosis in a rat neuronal progenitor cell line (CSM14.1). Herein we describe how structure-activity relationship (SAR) studies around these screening hits led to compounds that display robust cytoprotective activity against thapsigargin-induced ER stress in SH-SY5Y and H4 human neuronal cell lines. We demonstrate that the most potent of these derivatives, compound 4hh, inhibits the activation of p38 MAP kinase (p38) and c-Jun N-terminal kinase (JNK), protein kinases that are downstream signal effectors of the unfolded protein response (UPR). Compound 4hh specifically protects against thapsigargin-induced cell death and displays no protection against other insults known to induce cellular stress or activate p38. However, compound 4hh provides moderate inhibition of p38 activity stimulated by compounds that disrupt calcium homeostasis. Our data indicate that probe compound 4hh is a valuable small molecule tool that can be used to investigate the effects of ER stress on human neurons. This approach may provide the basis for the future development of therapeutics for the treatment of neurodegenerative diseases.


Subject(s)
Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Neurons/drug effects , Animals , Calcium/metabolism , Cell Death/drug effects , Cell Line , Dose-Response Relationship, Drug , Enzyme Inhibitors/toxicity , Homeostasis/drug effects , Humans , Imidazoles/pharmacology , Ionomycin/pharmacology , Leupeptins/pharmacology , MAP Kinase Signaling System/drug effects , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Rats , Structure-Activity Relationship , Thapsigargin/chemistry , Thapsigargin/toxicity
5.
ACS Med Chem Lett ; 2(10): 780-785, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-22003428

ABSTRACT

NOD1 (nucleotide-binding oligomerization domain 1) protein is a member of the NLR (NACHT and leucine rich repeat domain containing proteins) protein family, which plays a key role in innate immunity as a sensor of specific microbial components derived from bacterial peptidoglycans and induction of inflammatory responses. Mutations in NOD proteins have been associated with various inflammatory diseases that affect NF-κB (nuclear factor κB) activity, a major signaling pathway involved in apoptosis, inflammation, and immune response. A luciferase-based reporter gene assay was utilized in a high-throughput screening program conducted under the NIH-sponsored Molecular Libraries Probe Production Center Network program to identify the active scaffolds. Herein, we report the chemical synthesis, structure-activity relationship studies, downstream counterscreens, secondary assay data, and pharmacological profiling of the 2-aminobenzimidazole lead (compound 1c, ML130) as a potent and selective inhibitor of NOD1-induced NF-κB activation.

6.
Chem Biol ; 18(7): 825-32, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21802003

ABSTRACT

NLR family proteins play important roles in innate immune response. NOD1 (NLRC1) activates various signaling pathways including NF-κB in response to bacterial ligands. Hereditary polymorphisms in the NOD1 gene are associated with asthma, inflammatory bowel disease, and other disorders. Using a high throughput screening (HTS) assay measuring NOD1-induced NF-κB reporter gene activity, followed by multiple downstream counter screens that eliminated compounds impacting other NF-κB effectors, 2-aminobenzimidazole compounds were identified that selectively inhibit NOD1. Mechanistic studies of a prototypical compound, Nodinitib-1 (ML130; CID-1088438), suggest that these small molecules cause conformational changes of NOD1 in vitro and alter NOD1 subcellular targeting in cells. Altogether, this inaugural class of inhibitors provides chemical probes for interrogating mechanisms regulating NOD1 activity and tools for exploring the roles of NOD1 in various infectious and inflammatory diseases.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Nod1 Signaling Adaptor Protein/antagonists & inhibitors , Signal Transduction/drug effects , Cell Line , Cells, Cultured , Dendritic Cells/drug effects , Drug Evaluation, Preclinical , Genes, Reporter/drug effects , High-Throughput Screening Assays , Humans , NF-kappa B/genetics , Nod1 Signaling Adaptor Protein/immunology
SELECTION OF CITATIONS
SEARCH DETAIL