Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602103

ABSTRACT

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Subject(s)
Calcitonin Receptor-Like Protein , Coronary Artery Disease , Endothelial Cells , Enhancer Elements, Genetic , Polymorphism, Single Nucleotide , Stress, Mechanical , Humans , Endothelial Cells/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Calcitonin Receptor-Like Protein/genetics , Calcitonin Receptor-Like Protein/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Mechanotransduction, Cellular , Cells, Cultured , Gene Expression Regulation , Protein Binding , Genetic Predisposition to Disease , Binding Sites
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537685

ABSTRACT

BACKGROUND: Cerebral cavernous malformation (CCM) is a disease associated with an elevated risk of focal neurological deficits, seizures, and hemorrhagic stroke. The disease has an inflammatory profile and improved knowledge of CCM pathology mechanisms and exploration of candidate biomarkers will enable new non-invasive treatments. METHODS: We analyzed protein signatures in human CCM tissue samples by using a highly specific and sensitive multiplexing technique, proximity extension assay. FINDINGS: Data analysis revealed CCM specific proteins involved in endothelial dysfunction/inflammation/activation, leukocyte infiltration/chemotaxis, hemostasis, extracellular matrix dysfunction, astrocyte and microglial cell activation. Biomarker expression profiles matched bleeding status, especially with higher levels of inflammatory markers and activated astrocytes in ruptured than non-ruptured samples, some of these biomarkers are secreted into blood or urine. Furthermore, analysis was also done in a spatially resolving manner by separating the lesion area from the surrounding brain tissue. Our spatial studies revealed that although appearing histologically normal, the CCM border areas were pathological when compared to control brain tissues. Moreover, the functional relevance of CD93, ICAM-1 and MMP9, markers related to endothelial cell activation and extracellular matrix was validated by a murine pre-clinical CCM model. INTERPRETATION: Here we present a novel strategy for proteomics analysis on human CCMs, offering a possibility for high-throughput protein screening acquiring data on the local environment in the brain. Our data presented here describe CCM relevant brain proteins and specifically those which are secreted can serve the need of circulating CCM biomarkers to predict cavernoma's risk of bleeding.


Subject(s)
Biomarkers , Hemangioma, Cavernous, Central Nervous System , Intercellular Adhesion Molecule-1 , Proteomics , Humans , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Proteomics/methods , Biomarkers/metabolism , Biomarkers/analysis , Animals , Mice , Intercellular Adhesion Molecule-1/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Female , Adult , Middle Aged , Brain/metabolism , Brain/pathology , Membrane Proteins , Proto-Oncogene Proteins , Apoptosis Regulatory Proteins
3.
EBioMedicine ; 99: 104914, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113759

ABSTRACT

BACKGROUND: Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS: Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS: Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION: Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Animals , Humans , Male , Female , Hemangioma, Cavernous, Central Nervous System/etiology , Hemangioma, Cavernous, Central Nervous System/genetics , Proto-Oncogene Proteins/genetics , Microtubule-Associated Proteins/genetics , Zebrafish/metabolism , Biomarkers , Seizures , Antigens, Neoplasm , Cell Adhesion Molecules
4.
Transplant Direct ; 9(1): e1403, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36582671

ABSTRACT

Pretreating porcine kidneys with Corline Heparin Conjugate (CHC) during hypothermic machine perfusion (HMP) has been shown to reduce preservation injury and improve early kidney function. In this first-in-human phase I study, the safety and tolerability of transplanting CHC-pretreated kidneys were evaluated. Methods: CHC or placebo was added to the preservation solution during HMP of donated kidneys from deceased donors for at least 3 h before transplantation into adult patients. The primary safety endpoint was the number and severity of adverse events (AEs) and serious AEs (SAEs) during the first 30 d after transplantation. Results: In the first 30 d, 66 AEs were reported in 8 patients who received CHC-pretreated kidneys with 39 AEs in 8 patients who received placebo-pretreated kidneys (P = 0.1 in post hoc analysis). The most common AEs were hypertension (CHC, n = 5; placebo, n = 2) and anemia (CHC, n = 5; placebo, n = 2). Most AEs were assessed as mild (58%) or moderate (39%) and not related to treatment (95%). There were 2 SAEs reported in each group. One SAE, considered possibly related to CHC treatment, was a case of severe postprocedural hemorrhage that required reoperation. No patients needed dialysis. There were no observed rejections and no patient deaths. Conclusions: Pretreatment of kidneys with CHC before transplantation was considered safe and tolerable. Efficacy studies are now planned to investigate if CHC can reduce early ischemia-reperfusion injury in humans.

5.
J Pathol ; 259(3): 236-253, 2023 03.
Article in English | MEDLINE | ID: mdl-36367235

ABSTRACT

Lymph node (LN) lipomatosis is a common but rarely discussed phenomenon associated with aging that involves a gradual exchange of the LN parenchyma into adipose tissue. The mechanisms behind these changes and the effects on the LN are unknown. We show that LN lipomatosis starts in the medullary regions of the human LN and link the initiation of lipomatosis to transdifferentiation of LN fibroblasts into adipocytes. The latter is associated with a downregulation of lymphotoxin beta expression. We also show that isolated medullary and CD34+ fibroblasts, in contrast to the reticular cells of the T-cell zone, display an inherently higher sensitivity for adipogenesis. Progression of lipomatosis leads to a gradual loss of the medullary lymphatic network, but at later stages, collecting-like lymphatic vessels are found inside the adipose tissue. The stromal dysregulation includes a dramatic remodeling and dilation of the high endothelial venules associated with reduced density of naïve T-cells. Abnormal clustering of plasma cells is also observed. Thus, LN lipomatosis causes widespread stromal dysfunction with consequences for the immune contexture of the human LN. Our data warrant an increased awareness of LN lipomatosis as a factor contributing to decreased immune functions in the elderly and in disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Cell Transdifferentiation , Lipomatosis , Humans , Aged , Vascular Remodeling , Lymph Nodes/pathology , Lipomatosis/metabolism , Lipomatosis/pathology , Aging
6.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293431

ABSTRACT

Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Hemostatics , Humans , Hemangioma, Cavernous, Central Nervous System/genetics , Endothelial Cells , Thromboinflammation , Proteome , Hemostasis
7.
World Neurosurg ; 168: e645-e665, 2022 12.
Article in English | MEDLINE | ID: mdl-36241141

ABSTRACT

OBJECTIVE: Vertebrobasilar artery nonsaccular aneurysms (VBANSAs) are associated with a 13% annual mortality. Revascularization and flow diversion are life-saving options in select cases; technical failures and rapid hemodynamic changes may contribute to unwanted outcomes. We describe a technique and report clinical outcomes of patients treated with an experimental slow-closing clip (SCC). METHODS: An experimental SCC was created to gradually close the parent artery of aneurysms. Clinical, radiographic, and outcome data from patients with VBANSAs who underwent experimental treatment with the SCC were retrospectively analyzed. RESULTS: Among 10 patients (7 men; mean age, 49.5 years; range, 18-73 years), 6 presented with mass effect symptoms, 1 with ischemic stroke, 2 with subarachnoid hemorrhage, and 1 with hydrocephalus. Five patients underwent revascularization plus SCC application, and 5 were treated with SCC alone. The mean follow-up was 6.7 years. The expected mortality among patients with unruptured VBANSAs with previous treatment options in this period was 52.7%, whereas the observed rate was 20%. Four patients died within 12 months after treatment. Causes of death were brainstem ischemic stroke, poor-grade subarachnoid hemorrhage, poor clinical presentation, and unknown. Six patients were alive at last follow-up, with unchanged or improved modified Rankin Scale scores. Mortality was associated with posterior-projecting aneurysms and late-stage treatment. CONCLUSIONS: In this small case series, use of SCC overcame the natural history of VBANSAs when treatment timing and aneurysm anatomy were suitable. The SCC potentially favors aneurysm thrombosis and collateral reactivation. More studies are necessary to better develop the SCC.


Subject(s)
Brain Stem Infarctions , Intracranial Aneurysm , Ischemic Stroke , Subarachnoid Hemorrhage , Male , Humans , Middle Aged , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Retrospective Studies , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/surgery , Treatment Outcome , Surgical Instruments
8.
Blood ; 140(20): 2154-2169, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35981497

ABSTRACT

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Humans , Animals , Mice , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Endothelial Cells/metabolism , Apoptosis Regulatory Proteins/genetics , Thromboinflammation , von Willebrand Factor/metabolism , Hypoxia/metabolism
10.
Cell Mol Life Sci ; 79(4): 206, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333979

ABSTRACT

Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas  of patients with CCM confirms the clinical relevance of NETs in CCM.


Subject(s)
Extracellular Traps , Hemangioma, Cavernous, Central Nervous System , Animals , Apoptosis Regulatory Proteins/genetics , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Inflammation/pathology , Membrane Proteins/metabolism , Mice
11.
Neuro Oncol ; 24(3): 398-411, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34347079

ABSTRACT

BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood. METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1-/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1 deletion on glioma immunity was determined by treating tumor-bearing mice with PD-1-blocking antibodies. RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1 deletion, however, tumor vascular function was improved in ELTD1-/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1-/- mice. Consistent with an enhanced inflammatory response, ELTD1 deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade. CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggest that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.


Subject(s)
Brain Neoplasms , Glioma , Receptors, G-Protein-Coupled/genetics , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Endothelial Cells/metabolism , Gene Deletion , Glioma/drug therapy , Glioma/pathology , Humans , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/metabolism
13.
Int Immunopharmacol ; 90: 107237, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310662

ABSTRACT

The risk for adverse immune-mediated reactions, associated with the administration of certain immunotherapeutic agents, should be mitigated early. Infusion reactions to monoclonal antibodies and other biopharmaceuticals, known as cytokine release syndrome, can arise from the release of cytokines via the drug target cell, as well as the recruitment of immune effector cells. While several in vitro cytokine release assays have been proposed up to date, many of them lack important blood components, required for this response to occur. The blood endothelial cell chamber model is an in vitro assay, composed of freshly drawn human whole blood and cultured human primary endothelial cells. Herein, its potential to study the compatibility of immunotherapeutics with the human immune system was studied by evaluating three commercially available monoclonal antibodies and bacterial endotoxin lipopolysaccharide. We demonstrate that the anti-CD28 antibody TGN1412 displayed an adaptive cytokine release profile and a distinct IL-2 response, accompanied with increased CD3+ cell recruitment. Alemtuzumab exhibited a clear cytokine response with a mixed adaptive/innate source (IFNγ, TNFα and IL-6). Its immunosuppressive nature is observed in depleted CD3+ cells. Cetuximab, associated with low infusion reactions, showed a very low or absent stimulatory effect on proinflammatory cytokines. In contrast, bacterial endotoxin demonstrated a clear innate cytokine response, defined by TNFα, IL-6 and IL-1ß release, accompanied with a strong recruitment of CD14+CD16+ cells. Therefore, the blood endothelial cell chamber model is presented as a valuable in vitro tool to investigate therapeutic monoclonal antibodies with respect to cytokine release and vascular immune cell recruitment.


Subject(s)
Drug Development/instrumentation , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunotherapy/methods , Alemtuzumab/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Cells, Cultured , Cetuximab/pharmacology , Cytokines/blood , Humans , Immunity, Cellular/drug effects , Primary Cell Culture
14.
Elife ; 92020 11 03.
Article in English | MEDLINE | ID: mdl-33138917

ABSTRACT

Cerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, KRIT1, CCM2, and PDCD10 (CCM3). Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of Pdcd10 (Ccm3) in a mouse model of CCM. Integrated single-cell analysis identifies arterial ECs as refractory to CCM transformation. Conversely, a subset of angiogenic venous capillary ECs and respective resident endothelial progenitors appear to be at the origin of CCM lesions. These data are relevant for the understanding of the plasticity of the brain vascular system and provide novel insights into the molecular basis of CCM disease at the single cell level.


Subject(s)
Endothelial Cells/cytology , Hemangioma, Cavernous, Central Nervous System/physiopathology , Animals , Apoptosis Regulatory Proteins/metabolism , Arteries/pathology , Brain/blood supply , Brain/pathology , Cell Differentiation , Disease Models, Animal , Gene Deletion , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Mitosis , Neovascularization, Pathologic , Phenotype , RNA-Seq , Sequence Analysis, RNA , Signal Transduction/genetics , Single-Cell Analysis , Tamoxifen/pharmacology , Transcriptome
15.
Development ; 147(16)2020 08 24.
Article in English | MEDLINE | ID: mdl-32747434

ABSTRACT

Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/ß-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/ß-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/ß-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNS regions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/ß-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/ß-catenin activity.


Subject(s)
Blood-Brain Barrier/embryology , Collagen Type IV/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Collagen Type IV/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Transgenic , Pericytes/cytology , Pericytes/metabolism , beta Catenin/genetics
16.
Nat Commun ; 10(1): 2761, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235698

ABSTRACT

Cerebral cavernous malformation (CCM) is a neurovascular familial or sporadic disease that is characterised by capillary-venous cavernomas, and is due to loss-of-function mutations to any one of three CCM genes. Familial CCM follows a two-hit mechanism similar to that of tumour suppressor genes, while in sporadic cavernomas only a small fraction of endothelial cells shows mutated CCM genes. We reported that in mouse models and in human patients, endothelial cells lining the lesions have different features from the surrounding endothelium, as they express mesenchymal/stem-cell markers. Here we show that cavernomas originate from clonal expansion of few Ccm3-null endothelial cells that express mesenchymal/stem-cell markers. These cells then attract surrounding wild-type endothelial cells, inducing them to express mesenchymal/stem-cell markers and to contribute to cavernoma growth. These characteristics of Ccm3-null cells are reminiscent of the tumour-initiating cells that are responsible for tumour growth. Our data support the concept that CCM has benign tumour characteristics.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Central Nervous System Neoplasms/pathology , Endothelial Cells/pathology , Hemangioma, Cavernous, Central Nervous System/pathology , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Biomarkers/metabolism , Brain/blood supply , Brain/cytology , Brain/pathology , Cell Differentiation/genetics , Cell Line , Central Nervous System Neoplasms/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Female , Gene Knockout Techniques , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Loss of Function Mutation , Membrane Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Knockout , Proto-Oncogene Proteins/metabolism
17.
Circ Res ; 124(4): 511-525, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30591003

ABSTRACT

RATIONALE: The microvasculature of the central nervous system includes the blood-brain barrier (BBB), which regulates the permeability to nutrients and restricts the passage of toxic agents and inflammatory cells. Canonical Wnt/ß-catenin signaling is responsible for the early phases of brain vascularization and BBB differentiation. However, this signal declines after birth, and other signaling pathways able to maintain barrier integrity at postnatal stage are still unknown. OBJECTIVE: Sox17 (SRY [sex-determining region Y]-box 17) constitutes a major downstream target of Wnt/ß-catenin in endothelial cells and regulates arterial differentiation. In the present article, we asked whether Sox17 may act downstream of Wnt/ß-catenin in inducing BBB differentiation and maintenance. METHODS AND RESULTS: Using reporter mice and nuclear staining of Sox17 and ß-catenin, we report that although ß-catenin signaling declines after birth, Sox17 activation increases and remains high in the adult. Endothelial-specific inactivation of Sox17 leads to increase of permeability of the brain microcirculation. The severity of this effect depends on the degree of BBB maturation: it is strong in the embryo and progressively declines after birth. In search of Sox17 mechanism of action, RNA sequencing analysis of gene expression of brain endothelial cells has identified members of the Wnt/ß-catenin signaling pathway as downstream targets of Sox17. Consistently, we found that Sox17 is a positive inducer of Wnt/ß-catenin signaling, and it acts in concert with this pathway to induce and maintain BBB properties. In vivo, inhibition of the ß-catenin destruction complex or expression of a degradation-resistant ß-catenin mutant, prevent the increase in permeability and retina vascular malformations observed in the absence of Sox17. CONCLUSIONS: Our data highlight a novel role for Sox17 in the induction and maintenance of the BBB, and they underline the strict reciprocal tuning of this transcription factor and Wnt/ß-catenin pathway. Modulation of Sox17 activity may be relevant to control BBB permeability in pathological conditions.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , HMGB Proteins/metabolism , SOXF Transcription Factors/metabolism , Wnt Signaling Pathway , Animals , HMGB Proteins/genetics , Mice , Mice, Inbred C57BL , SOXF Transcription Factors/genetics
18.
Transplantation ; 103(2): 420-427, 2019 02.
Article in English | MEDLINE | ID: mdl-30299374

ABSTRACT

BACKGROUND: Previously, we have been able to demonstrate the possibility of coating the inner surface of the renal arteries in porcine kidneys with a heparin conjugate during hypothermic machine perfusion (HMP). The purpose of this study was to assess the efficacy of this treatment in reducing early ischemia-reperfusion injury. METHOD: Brain death was induced in male landrace pigs by stepwise volume expansion of an epidural balloon catheter until negative cerebral perfusion pressure (CPP) was obtained. Both kidneys (matched pairs; n = 6 + 6) were preserved for 20 hours by HMP during which 50 mg heparin conjugate was added to one of the HMP systems (treated group). A customized ex vivo normothermic oxygenated perfusion (NP) system with added exogenous creatinine was used to evaluate early kidney function. Blood, urine and histological samples were collected during the subsequent 3 hours of NP. RESULTS: Kidney weight was lower at the end of NP (P = 0.017) in the treated group compared with control kidneys. The rate of decline in creatinine level was faster (P = 0.024), total urinary volume was higher (P = 0.031), and the level of urine neutrophil gelatinase-associated lipocalin (NGAL) was lower (P = 0.031) in the treated group. Histologically, less tubular changes were seen (P = 0.046). During NP intrarenal resistance remained lower (P < 0.0001) in the treated group. CONCLUSIONS: Perfusion of porcine kidneys with heparin conjugate during HMP reduces preservation injury and improves organ function shortly after reperfusion. No increased risk of bleeding was seen in this setup. This protective strategy may potentially improve the quality of transplanted kidneys in the clinical setting.


Subject(s)
Heparin/pharmacology , Kidney Transplantation/methods , Perfusion/methods , Reperfusion Injury/prevention & control , Animals , Lipocalin-2/urine , Male , Swine , Thrombelastography
19.
Sci Rep ; 8(1): 5220, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581529

ABSTRACT

Ischemia reperfusion injury is one of the major complications responsible for delayed graft function in kidney transplantation. Applications to reduce reperfusion injury are essential due to the widespread use of kidneys from deceased organ donors where the risk for delayed graft function is especially prominent. We have recently shown that coating of inflamed or damaged endothelial cells with a unique heparin conjugate reduces thrombosis and leukocyte recruitment. In this study we evaluated the binding capacity of the heparin conjugate to cultured human endothelial cells, to kidneys from brain-dead porcine donors, and to murine kidneys during static cold storage. The heparin conjugate was able to stably bind cultured endothelial cells with high avidity, and to the renal vasculature of explanted kidneys from pigs and mice. Treatment of murine kidneys prior to transplantation reduced platelet deposition and leukocyte infiltration 24 hours post-transplantation, and significantly improved graft function. The present study thus shows the benefits of enhanced protection of the renal vasculature during cold storage, whereby increasing the antithrombotic and anti-adhesive properties of the vascular endothelium yields improved renal function early after transplantation.


Subject(s)
Endothelium, Vascular/growth & development , Heparin/administration & dosage , Kidney Transplantation , Kidney/growth & development , Animals , Brain Death/pathology , Cryopreservation , Delayed Graft Function/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/transplantation , Graft Survival , Humans , Kidney/drug effects , Kidney/pathology , Mice , Renal Veins/drug effects , Renal Veins/growth & development , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Swine , Tissue Donors
20.
Circ Res ; 121(8): 981-999, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28963191

ABSTRACT

Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-ß/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-ß/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-ß/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-ß/BMP receptor complex and the second to increased signaling sensitivity to TGF-ß/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.


Subject(s)
Blood Vessels/metabolism , Bone Morphogenetic Proteins/metabolism , Neovascularization, Physiologic , Signal Transduction , Transforming Growth Factor beta/metabolism , Vascular Malformations/metabolism , Animals , Blood Vessels/abnormalities , Blood Vessels/physiopathology , Bone Morphogenetic Proteins/genetics , Disease Models, Animal , Genetic Predisposition to Disease , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/physiopathology , Humans , Mice, Transgenic , Mutation , Phenotype , Risk Factors , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Telangiectasia, Hereditary Hemorrhagic/physiopathology , Transforming Growth Factor beta/genetics , Vascular Malformations/genetics , Vascular Malformations/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL