Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 173825, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857792

ABSTRACT

Understanding the role of hydrologic variation in structuring aquatic communities is crucial for successful conservation and sustainable management of native freshwater biodiversity. Partitioning beta diversity into the additive components of spatial turnover and nestedness can provide insight into the forces driving variability in fish assemblages across stream flow regimes. We examined stream fish beta diversity across hydrologic and anthropogenic disturbance gradients using long-term (1916-2016) site occurrence records (n = 17,375) encompassing 252 species. We assessed total beta diversity (Sørensen dissimilarity), spatial turnover, and nestedness of fish assemblages in contrasting stream flow regimes across a gradient of decreasing flow stability: groundwater stable (n = 77), groundwater (n = 67), groundwater flashy (n = 175), perennial runoff (n = 141), runoff flashy (n = 255), and intermittent (n = 63) streams. Differences in total beta diversity among the stream flow regimes were driven predominantly (>86 %) by spatial turnover (i.e. species replacement) as opposed to nestedness (i.e. species loss or gain). Total fish beta diversity and spatial turnover were highest in streams with intermediate flow stability (groundwater flashy), while more flow-stable streams (groundwater stable and groundwater) had lower turnover and higher nestedness. Species turnover was also strongly associated with seasonal variation in hydrology across all flow regimes, but these relationships were most evident for assemblages in intermittent streams. Distance-based statistical comparisons showed significant correlations between beta diversity and anthropogenic disturbance variables, including dam density, dam storage volume and water withdrawals in catchments of groundwater stable streams, while hydrologic variables were more strongly correlated with beta diversity in streams with runoff-dominated and flashy flow regimes. The high spatial turnover of species implies that fish conservation actions would benefit from watershed-focused approaches targeting multiple streams with wide spatial distribution, as opposed to simply focusing on preserving sites with the greatest number of species.

2.
PLoS One ; 17(7): e0269222, 2022.
Article in English | MEDLINE | ID: mdl-35834507

ABSTRACT

Drought and nutrient pollution can affect the dynamics of stream ecosystems in diverse ways. While the individual effects of both stressors are broadly examined in the literature, we still know relatively little about if and how these stressors interact. Here, we performed a mesocosm experiment that explores the compounded effects of seasonal drought via water withdrawals and nutrient pollution (1.0 mg/L of N and 0.1 mg/L of P) on a subset of Ozark stream community fauna and ecosystem processes. We observed biological responses to individual stressors as well as both synergistic and antagonistic stressor interactions. We found that drying negatively affected periphyton assemblages, macroinvertebrate colonization, and leaf litter decomposition in shallow habitats. However, in deep habitats, drought-based increases in fish density caused trophic cascades that released algal communities from grazing pressures; while nutrient enrichment caused bottom-up cascades that influenced periphyton variables and crayfish growth rates. Finally, the combined effects of drought and nutrient enrichment interacted antagonistically to increase survival in longear sunfish; and stressors acted synergistically on grazers causing a trophic cascade that increased periphyton variables. Because stressors can directly and indirectly impact biota-and that the same stressor pairing can act differentially on various portions of the community simultaneously-our broad understanding of individual stressors might not adequately inform our knowledge of multi-stressor systems.


Subject(s)
Periphyton , Rivers , Animals , Droughts , Ecosystem , Nutrients/analysis
3.
Sci Rep ; 11(1): 10704, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021176

ABSTRACT

Hydrologic variation can play a major role in structuring stream fish assemblages and relationships between hydrology and biology are likely to be influenced by flow regime. We hypothesized that more variable flow regimes would have lower and more variable species richness, higher species turnover and lower assemblage stability, and greater abiotic environment-fish relationships than more stable flow regimes. We sampled habitats (pool, run, and riffle) in three Runoff/Intermittent Flashy streams (highly variable flow regime) and three Groundwater Flashy streams (less variable flow regime) seasonally (spring, early summer, summer and autumn) in 2002 (drought year) and 2003 (wet year). We used backpack electrofishing and three-pass removal techniques to estimate fish species richness, abundance and density. Fish species richness and abundance remained relatively stable within streams and across seasons, but densities changed substantially as a result of decreased habitat volume. Mixed model analysis showed weak response variable-habitat relationships with strong season effects in 2002, and stronger habitat relationships and no season effect in 2003, and flow regime was not important in structuring these relationships. Seasonal fish species turnover was significantly greater in 2002 than 2003, but did not differ between flow regimes. Fish assemblage stability was significantly lower in Runoff/Intermittent Flashy than Groundwater Flashy streams in 2002, but did not differ between flow regimes in 2003. Redundancy analysis showed fish species densities were well separated by flow regime in both years. Periodic and opportunistic species were characteristic of Runoff/Intermittent Flashy streams, whereas mainly equilibrium species were characteristic of Groundwater Flashy streams. We found that spatial and temporal variation in hydrology had a strong influence on fish assemblage dynamics in Ozark streams with lower assemblage stability and greater fluctuations in density in more hydrologically variable streams and years. Understanding relationships between fish assemblage structure and hydrologic variation is vital for conservation of fish biodiversity. Future work should consider addressing how alteration of hydrologic variation will affect biotic assemblages.


Subject(s)
Droughts , Ecosystem , Fishes , Rivers , Water Movements , Animals , Biodiversity , Environment , Population Dynamics
4.
Oecologia ; 196(2): 413-425, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34018009

ABSTRACT

A central goal of population ecology is to establish linkages between life history strategy, disturbance, and population dynamics. Globally, disturbance events such as drought and invasive species have dramatically impacted stream fish populations and contributed to sharp declines in freshwater biodiversity. Here, we used RAMAS Metapop to construct stage-based demographic metapopulation models for stream fishes with periodic, opportunistic, and equilibrium life history strategies and assessed their responses to the effects of invasion (reduced carrying capacity), extended drought (reduced survival and fecundity), and the combined effects of both disturbances. Our models indicated that populations respond differentially to disturbance based on life history strategy. Equilibrium strategists were best able to deal with simulated invasion. Periodic strategists did well under lower levels of drought, whereas opportunistic strategists outperformed other life histories under extreme seasonal drought. When we modeled additive effects scenarios, these disturbances interacted synergistically, dramatically increasing terminal extinction risk for all three life history strategies. Modeling exercises that examine broad life history categories can help to answer fundamental ecological questions about the relationship between disturbance resilience and life history, as well as help managers to develop generalized conservation strategies when species-specific data are lacking. Our results indicate that life history strategy is a fundamental determinant of population trajectories, and that disturbances can interact synergistically to dramatically impact extinction outcomes.


Subject(s)
Life History Traits , Rivers , Animals , Conservation of Natural Resources , Ecosystem , Fishes
5.
Sci Total Environ ; 686: 254-263, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31181513

ABSTRACT

Aquatic organisms have adapted over evolutionary time-scales to hydrologic variability represented by the natural flow regime of rivers and streams in their unimpaired state. Rapid landscape change coupled with growing human demand for water have altered natural flow regimes of many rivers and streams on a global scale. Climate non-stationarity is expected to further intensify hydrologic variability, placing increased pressure on aquatic communities. Using a machine learning approach and georeferenced species occurrence data, we modeled and mapped spatial patterns of hydrologic disturbance for streams in Arkansas, Missouri, and eastern Oklahoma. Random forest (RF) models trained on fish community data, hydrologic, and landscape metrics for gaged streams in the National Hydrography (NHDPlusV2) database were used to predict a hydrologic disturbance index (HDI) for ungaged streams. The HDI is part of the USGS Geospatial Attributes of Gages for Evaluating Streamflow (GAGESII) database and is a composite index of watershed-scale disturbance from anthropogenic stressors. Fish presence/absence data had similar overall model prediction accuracy (77%; 95% CI: 0.74, 0.80) as flow variables (76%; CI: 0.73, 0.80). Including topographic variables increased the RF prediction accuracy of both the fish (90%; CI: 0.88, 0.92) and flow models (86%; CI: 0.84, 0.89). Spatial patterns of hydrologic disturbance suggest distinct ecohydrological regions exist where conservation actions may be focused. Streams with low HDI were predominately located in the Ozark Highlands, Boston Mountains, and Ouachita Mountains. Correlation analysis of HDI by flow regime showed groundwater stable streams had the lowest disturbance frequency, with over 50% of stream reaches with low HDI located in forested land cover. HDI was highest for big rivers, intermittent runoff streams and streams in areas of agricultural land use. Our results show long-term georeferenced biological data can provide a valuable resource for predictive modeling of hydrologic disturbance for ungaged rivers and streams.


Subject(s)
Aquatic Organisms/growth & development , Environmental Monitoring/methods , Animals , Biodiversity , Ecosystem , Hydrology , Rivers , Water Movements
6.
Sci Total Environ ; 672: 680-697, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30974359

ABSTRACT

We examined flow alteration-ecology relationships in benthic macroinvertebrate, fish, and crayfish assemblages in Ozark Highland streams, USA, over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We hypothesized that: 1) there would be temporal variation in flow alteration-ecology relationships between the two years, 2) flow alteration-ecology relationships would be stronger during the drought year vs the flood year, and 3) fish assemblages would show the strongest relationships with flow alteration. We used a quantitative richest-targeted habitat (RTH) method and a qualitative multi-habitat (QMH) method to collect macroinvertebrates at 16 USGS gaged sites during both years. We used backpack electrofishing to sample fish and crayfish at 17 sites in 2012 and 11 sites in 2013. We used redundancy analysis to relate biological response metrics, including richness, diversity, density, and community-based metrics, to flow alteration. We found temporal variation in flow alteration-ecology relationships for all taxa, and that relationships differed greatly between assemblages. We found relationships were stronger for macroinvertebrates during the drought year but not for other assemblages, and that fish assemblage relationships were not stronger than the invertebrate taxa. Magnitude of average flow, frequency of high flow, magnitude of high flow, and duration of high flow were the most important categories of flow alteration metrics across taxa. Alteration of high and average flows was more important than alteration of low flows. Of 32 important flow alteration metrics across years and assemblages, 19 were significantly altered relative to expected values. Ecological responses differed substantially between drought and flood years, and this is likely to be exacerbated with predicted climate change scenarios. Differences in flow alteration-ecology relationships among taxonomic groups and temporal variation in relationships illustrate that a complex suite of variables should be considered for effective conservation of stream communities related to flow alteration.


Subject(s)
Ecology , Ecosystem , Environmental Monitoring , Fishes/physiology , Invertebrates/physiology , Water Movements , Animals , Astacoidea , Climate Change , Nebraska , Rivers
7.
PLoS One ; 13(8): e0202737, 2018.
Article in English | MEDLINE | ID: mdl-30125314

ABSTRACT

Climate change will affect stream systems in numerous ways over the coming century. Globally, streams are expected to experience changes in temperature and flow regime. Previous work has indicated that these changes will likely affect fish distributions, but little work has been conducted examining population level effects of climate change on warmwater fish at the warmest portion of their range. We model several potential climate change-related stressors and the resulting effects on smallmouth bass Micropterus dolomieu populations in the Buffalo National River, Arkansas, USA, located near the southern extent of smallmouth bass range. Smallmouth bass are a popular recreational fish in the region and angler harvest likely contributes substantially to annual mortality. We created a simulation model parameterized with data collected from the Buffalo National River to evaluate the relative importance of climate stressors and angler harvest on smallmouth bass populations. Our simulations suggest that increases in springtime temperature and reductions in river discharge during the spawning period could increase recruitment, resulting in increases in adult abundance (8% higher). However, when increased flooding and drought probabilities are considered, our model indicates the Buffalo National River could experience large reductions in adult smallmouth bass abundance (≥50% decline) and increased probability of extinction compared to present levels. Simulations showed that harvest reduction could be a viable strategy to reduce the negative effects of climate change, but that even with complete closure of harvest, smallmouth bass population levels would still be well below present abundance (46% lower than present). Efforts to reduce flooding and drought effects related to climate change in the Buffalo National River could help offset the predicted reduction in the smallmouth bass population.


Subject(s)
Bass/physiology , Climate Change , Animals , Arkansas , Droughts , Floods , Models, Theoretical , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...