Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Cardiovasc Magn Reson ; 25(1): 6, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36740688

ABSTRACT

BACKGROUND: Phosphorus cardiovascular magnetic resonance spectroscopy (31P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution 31P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity. We hypothesised a synergistic effect to augment energetic status, evidenced by an increase in the ratio of phosphocreatine-to-adenosine-triphosphate (PCr/ATP). METHODS AND RESULTS: Single transgenic Creatine Transporter overexpressing (CrT-OE, n = 7) and dTg mice (CrT-OE and CK, n = 6) mice were anaesthetised with isoflurane to acquire 31P-CMRS measurements of the left ventricle (LV) utilising a two-dimensional (2D), threefold under-sampled density-weighted chemical shift imaging (2D-CSI) sequence, which provided high-resolution data with nominal voxel size of 8.5 µl within 70 min. (1H-) cine-CMR data for cardiac function assessment were obtained in the same imaging session. Under a separate examination, mice received invasive haemodynamic assessment, after which tissue was collected for biochemical analysis. Myocardial creatine levels were elevated in all mouse hearts, but only dTg exhibited significantly elevated CK activity, resulting in a 51% higher PCr/ATP ratio in heart (3.01 ± 0.96 vs. 2.04 ± 0.57-mean ± SD; dTg vs. CrT-OE), that was absent from adjacent skeletal muscle. No significant differences were observed for any parameters of LV structure and function, confirming that augmentation of CK activity does not have unforeseen consequences for the heart. CONCLUSIONS: We have developed an improved 31P-CMRS methodology for the in vivo assessment of energetics in the murine heart which enabled high-resolution imaging within acceptable scan times. Mice over-expressing both creatine and CK in the heart exhibited a synergistic elevation in PCr/ATP that can now be tested for therapeutic potential in models of chronic heart failure.


Subject(s)
Creatine Kinase , Creatine , Mice , Animals , Creatine Kinase/metabolism , Creatine/metabolism , Energy Metabolism/physiology , Predictive Value of Tests , Myocardium/pathology , Phosphocreatine/metabolism , Adenosine Triphosphate/metabolism , Mice, Transgenic
2.
Dalton Trans ; 49(9): 2989-2993, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32080690

ABSTRACT

The kinetically stable heptadentate gadolinium complex Gd.pDO3A (1.Gd) demonstrates significant 31P nuclear magnetic resonance (NMR) relaxation enhancement of biologically relevant phosphate species; adenosine triphosphate (ATP), phosphocreatine (PCr) and inorganic phosphate. Gd.pDO3A (1.Gd) binds these species in fast exchange, enabling the relaxation of the bulk phosphate species in solution. This gives rise to 31P relaxation enhancements up to 250-fold higher than those observed for 31P relaxation enhancements with the commercial MRI contrast agent Gd.DOTA (DOTAREM), 2. Gd.pDO3A-like complexes may have potential applications as 31P magnetic resonance contrast agents, since shortening the T1 relaxation time of phosphate species would reduce the time needed to acquire 31P-MR spectra.

3.
Basic Res Cardiol ; 115(2): 12, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31925563

ABSTRACT

Mitochondrial creatine kinase (Mt-CK) is a major determinant of cardiac energetic status and is down-regulated in chronic heart failure, which may contribute to disease progression. We hypothesised that cardiomyocyte-specific overexpression of Mt-CK would mitigate against these changes and thereby preserve cardiac function. Male Mt-CK overexpressing mice (OE) and WT littermates were subjected to transverse aortic constriction (TAC) or sham surgery and assessed by echocardiography at 0, 3 and 6 weeks alongside a final LV haemodynamic assessment. Regardless of genotype, TAC mice developed progressive LV hypertrophy, dilatation and contractile dysfunction commensurate with pressure overload-induced chronic heart failure. There was a trend for improved survival in OE-TAC mice (90% vs 73%, P = 0.08), however, OE-TAC mice exhibited greater LV dilatation compared to WT and no functional parameters were significantly different under baseline conditions or during dobutamine stress test. CK activity was 37% higher in OE-sham versus WT-sham hearts and reduced in both TAC groups, but was maintained above normal values in the OE-TAC hearts. A separate cohort of mice received in vivo cardiac 31P-MRS to measure high-energy phosphates. There was no difference in the ratio of phosphocreatine-to-ATP in the sham mice, however, PCr/ATP was reduced in WT-TAC but preserved in OE-TAC (1.04 ± 0.10 vs 2.04 ± 0.22; P = 0.007). In conclusion, overexpression of Mt-CK activity prevented the changes in cardiac energetics that are considered hallmarks of a failing heart. This had a positive effect on early survival but was not associated with improved LV remodelling or function during the development of chronic heart failure.


Subject(s)
Creatine Kinase, Mitochondrial Form/metabolism , Energy Metabolism , Heart Failure/enzymology , Hypertrophy, Left Ventricular/enzymology , Mitochondria, Heart/enzymology , Myocytes, Cardiac/enzymology , Ventricular Dysfunction, Left/enzymology , Animals , Chronic Disease , Creatine Kinase, Mitochondrial Form/genetics , Disease Models, Animal , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Signal Transduction , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left , Ventricular Remodeling
5.
ACS Appl Mater Interfaces ; 11(7): 6724-6740, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30688055

ABSTRACT

Extraordinarily small (2.4 nm) cobalt ferrite nanoparticles (ESCIoNs) were synthesized by a one-pot thermal decomposition approach to study their potential as magnetic resonance imaging (MRI) contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly crystalline cubic spinel particles with atomic resolution. Ligand exchange with dimercaptosuccinic acid rendered the particles stable in physiological conditions with a hydrodynamic diameter of 12 nm. The particles displayed superparamagnetic properties and a low r2/ r1 ratio suitable for a T1 contrast agent. The particles were functionalized with bile acid, which improved biocompatibility by significant reduction of reactive oxygen species generation and is a first step toward liver-targeted T1 MRI. Our study demonstrates the potential of ESCIoNs as T1 MRI contrast agents.

7.
PLoS One ; 13(1): e0190558, 2018.
Article in English | MEDLINE | ID: mdl-29324754

ABSTRACT

PURPOSE: To a) achieve cardiac 19F-Magnetic Resonance Imaging (MRI) of perfluoro-crown-ether (PFCE) labeled cardiac progenitor stem cells (CPCs) and bone-derived bone marrow macrophages, b) determine label concentration and cellular load limits, and c) achieve spectroscopic and image-based quantification. METHODS: Theoretical simulations and experimental comparisons of spoiled-gradient echo (SPGR), rapid acquisition with relaxation enhancement (RARE), and steady state at free precession (SSFP) pulse sequences, and phantom validations, were conducted using 19F MRI/Magnetic Resonance Spectroscopy (MRS) at 9.4 T. Successful cell labeling was confirmed using flow cytometry and confocal microscopy. For CPC and macrophage concentration quantification, in vitro and post-mortem cardiac validations were pursued with the use of the transfection agent FuGENE. Feasibility of fast imaging is demonstrated in murine cardiac acquisitions in vivo, and in post-mortem murine skeletal and cardiac applications. RESULTS: SPGR/SSFP proved favorable imaging sequences yielding good signal-to-noise ratio values. Confocal microscopy confirmed heterogeneity of cellular label uptake in CPCs. 19F MRI indicated lack of additional benefits upon label concentrations above 7.5-10 mg/ml/million cells. The minimum detectable CPC load was ~500k (~10k/voxel) in two-dimensional (2D) acquisitions (3-5 min) using the butterfly coil. Additionally, absolute 19F based concentration and intensity estimates (trifluoroacetic-acid solutions, macrophages, and labeled CPCs in vitro and post-CPC injections in the post-mortem state) scaled linearly with fluorine concentrations. Fast, quantitative cardiac 19F-MRI was demonstrated with SPGR/SSFP and MRS acquisitions spanning 3-5 min, using a butterfly coil. CONCLUSION: The developed methodologies achieved in vivo cardiac 19F of exogenously injected labeled CPCs for the first time, accelerating imaging to a total acquisition of a few minutes, providing evidence for their potential for possible translational work.


Subject(s)
Fluorine-19 Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Macrophages/cytology , Stem Cells/cytology , Animals , Mice , Microscopy, Confocal , Phantoms, Imaging
8.
Nat Commun ; 8(1): 1258, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097735

ABSTRACT

AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αßγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (I f) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.


Subject(s)
AMP-Activated Protein Kinases/genetics , Bradycardia/genetics , Calcium/metabolism , Heart Rate/genetics , Sarcolemma/metabolism , Sinoatrial Node/metabolism , Adult , Animals , Bradycardia/metabolism , Electrocardiography, Ambulatory , Exercise , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron, Transmission , Mutation , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Physical Conditioning, Animal , Physical Endurance , Ryanodine Receptor Calcium Release Channel/metabolism , Sinoatrial Node/pathology
9.
Sci Rep ; 7(1): 2917, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592901

ABSTRACT

The adult zebrafish is a well-established model for studying heart regeneration, but due to its tissue opaqueness, repair has been primarily assessed using destructive histology, precluding repeated investigations of the same animal. We present a high-resolution, non-invasive in vivo magnetic resonance imaging (MRI) method incorporating a miniature respiratory and anaesthetic perfusion set-up for live adult zebrafish, allowing for visualization of scar formation and heart regeneration in the same animal over time at an isotropic 31 µm voxel resolution. To test the method, we compared well and poorly healing cardiac ventricles using a transgenic fish model that exhibits heat-shock (HS) inducible impaired heart regeneration. HS-treated groups revealed persistent scar tissue for 10 weeks, while control groups were healed after 4 weeks. Application of the advanced MRI technique allowed clear discrimination of levels of repair following cryo- and resection injury for several months. It further provides a novel tool for in vivo time-lapse imaging of adult fish for non-cardiac studies, as the method can be readily applied to image wound healing in other injured or diseased tissues, or to monitor tissue changes over time, thus expanding the range of questions that can be addressed in adult zebrafish and other small aquatic species.


Subject(s)
Heart/diagnostic imaging , Heart/physiology , Magnetic Resonance Imaging , Regeneration , Animals , Animals, Genetically Modified , Disease Models, Animal , Heart Diseases/diagnostic imaging , Heart Diseases/pathology , Zebrafish
10.
Magn Reson Med ; 77(1): 170-179, 2017 01.
Article in English | MEDLINE | ID: mdl-26749277

ABSTRACT

PURPOSE: To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. METHODS: The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. RESULTS: The errors in apparent diffusion coefficients along orthogonal axes ranged from -9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and -0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from -5.5% to + 4.5% precalibration and were likewise reduced to -0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. CONCLUSION: Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170-179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.


Subject(s)
Diffusion Magnetic Resonance Imaging , Calibration , Cyclooctanes/chemistry , Diffusion Magnetic Resonance Imaging/instrumentation , Diffusion Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/standards , Nonlinear Dynamics , Phantoms, Imaging
11.
J Magn Reson Imaging ; 45(6): 1659-1667, 2017 06.
Article in English | MEDLINE | ID: mdl-27990708

ABSTRACT

PURPOSE: To assess the uptake, accumulation, temporal stability, and spatial localization of isoflurane (ISO) in the C57BL/6 mouse, and to identify its potential interference with the detection of labeled cardiac progenitor cells using 19 F MRI/MR spectroscopy (MRS). MATERIALS AND METHODS: Objectives are demonstrated using (a) in vitro ISO tests, (b) in vivo temporal accumulation/spatial localization C57BL/6 studies (n = 3), and (c) through injections of perfluoro-crown-ether (PFCE) labeled cardiac progenitor cells into femoral muscle areas of the murine hindlimb post-mortem (n = 1) using 1 H/19 F MRI/MRS at 9.4 Tesla. Data were acquired using double-gated spoiled gradient echo images and pulse-acquire spectra. For the in vivo study, the temporal stability of ISO resonances was quantified using coefficient of variability (CV) (5 min) estimates. RESULTS: Two ISO resonances were observed in vivo that correspond to the -CF3 and -OCHF2 moieties. CV values ranged between 3.2 and 6.4% (-CF3 ) and 6.4 and 11.2% (-OCHF2 ). Reductions of the ISO dose (2.0 to 1.7%) at 80 min postinduction had insignificant effects on ISO signals (P = 0.23; P = 0.71). PFCE-labeled cells exhibited a resonance at -16.25 ppm in vitro that did not overlap with the ISO resonances, a finding that is confirmed with MRS post-mortem using injected, labeled cells. Based on 19 F MRI, similar in vivo/post-mortem ISO compartmentalization was also confirmed in peripheral and thoracic skeletal muscles. CONCLUSION: Significant ISO accumulation was observed by 19 F MRS in vivo with temporally stable signals over 90 min postinduction. ISO effects on PFCE labels are anticipated to be minimal but may be more prominent for perfluoropolyether or perfluorooctyl bromide labels. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1659-1667.


Subject(s)
Artifacts , Cell Tracking/methods , Ethers/pharmacokinetics , Fluorocarbons/pharmacokinetics , Isoflurane/pharmacokinetics , Magnetic Resonance Imaging , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cells, Cultured , Contrast Media , Fluorine Radioisotopes/pharmacokinetics , Isoflurane/pharmacology , Male , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Reproducibility of Results , Sensitivity and Specificity , Stem Cells/drug effects , Tissue Distribution
12.
Sci Rep ; 6: 30573, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27466029

ABSTRACT

Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart.


Subject(s)
Diffusion Tensor Imaging/methods , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Animals , Calibration , Myocytes, Cardiac , Rats, Sprague-Dawley , Signal-To-Noise Ratio
13.
J Cardiovasc Magn Reson ; 17: 45, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26073300

ABSTRACT

BACKGROUND: Magnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times. Compressed sensing (CS) has been successfully applied to clinical 1H MRSI, however a detailed evaluation of CS for conventional chemical shift imaging is lacking. Here we evaluate the performance of CS accelerated MRSI, and specifically apply it to accelerate 23Na-MRSI on mouse hearts in vivo at 9.4 T. METHODS: Synthetic phantom data representing a simplified section across a mouse thorax were used to evaluate the fidelity of the CS reconstruction for varying levels of under-sampling, resolution and signal-to-noise ratios (SNR). The amplitude of signals arising from within a compartment, and signal contamination arising from outside the compartment relative to noise-free Fourier-transformed (FT) data were determined. Simulation results were subsequently verified experimentally in phantoms and in three mouse hearts in vivo. RESULTS: CS reconstructed MRSI data are scaled linearly relative to absolute signal intensities from the fully-sampled FT reconstructed case (R(2) > 0.8, p-value < 0.001). Higher acceleration factors resulted in a denoising of the reconstructed spectra, but also in an increased blurring of compartment boundaries, particularly at lower spatial resolutions. Increasing resolution and SNR decreased cross-compartment contamination and yielded signal amplitudes closer to the FT data. Proof-of-concept high-resolution, 3-fold accelerated 23Na-amplitude maps of murine myocardium could be obtained within ~23 mins. CONCLUSIONS: Relative signal amplitudes (i.e. metabolite ratios) and absolute quantification of metabolite concentrations can be accurately determined with up to 5-fold under-sampled, CS-reconstructed MRSI. Although this work focused on murine cardiac 23Na-MRSI, the results are equally applicable to other nuclei and tissues (e.g., 1H MRSI in brain). Significant reduction in MRSI scan time will reduce the burden on the subject, increase scanner throughput, and may open new avenues for (pre-) clinical metabolic studies.


Subject(s)
Data Compression/methods , Magnetic Resonance Spectroscopy , Myocardium/metabolism , Sodium Isotopes , Animals , Biomarkers/metabolism , Computer Simulation , Fourier Analysis , Linear Models , Magnetic Resonance Spectroscopy/instrumentation , Mice , Phantoms, Imaging , Signal-To-Noise Ratio , Time Factors
14.
Environ Toxicol Chem ; 33(1): 61-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24122881

ABSTRACT

Metabolic profiling can be used to assess the changes in biochemical profiles of soil communities living in contaminated sites. The term "community metabolomics" is proposed for the application of metabolomics techniques to the study of the entire community of a soil sample. The authors anticipate the present study to be a starting point for the use of this technique to assess how communities respond to factors such as pollution and climate change.


Subject(s)
Environmental Monitoring/methods , Metabolomics , Soil Microbiology , Amino Acids/analysis , Carbohydrates/analysis , Carbon/analysis , Environmental Pollution/analysis , Hydrogen-Ion Concentration , Metals/analysis , Mining , Nucleotides/analysis , Soil Pollutants/analysis
15.
J Magn Reson ; 202(2): 223-33, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20015671

ABSTRACT

This paper introduces DANGLE, a new algorithm that employs Bayesian inference to estimate the likelihood of all possible values of the backbone dihedral angles phi and psi for each residue in a query protein, based on observed chemical shifts and the conformational preferences of each amino acid type. The method provides robust estimates of phi and psi within realistic boundary ranges, an indication of the degeneracy in the relationship between shift measurements and conformation at each site, and faithful secondary structure state assignments. When a simple degeneracy-based filtering procedure is applied, DANGLE offers an ideal compromise between accuracy and coverage when compared with other shift-based dihedral angle prediction methods. In addition, per residue analysis of shift/structure degeneracy has potential to be a useful new approach for studying the properties of unfolded proteins, with sufficient sensitivity to identify regions of residual structure in the acid denatured state of apomyoglobin.


Subject(s)
Algorithms , Protein Structure, Secondary , Proteins/chemistry , Amino Acids/chemistry , Apoproteins/chemistry , Bayes Theorem , Databases, Factual , Glycine/chemistry , Myoglobin/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Probability , Protein Folding
16.
Electrophoresis ; 30(8): 1259-75, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19382137

ABSTRACT

The effects of chronic administration of Sake (Japanese alcoholic beverage, Nihonshu) on brain and liver of female F334 (Fisher) rats were surveyed via global omic analyses using DNA microarray, 2-DE, and proton nuclear magnetic resonance. Rats weaned at 4 wk of age were given free access to Sake (15% alcohol), instead of water. At 13 months of age, and 24 h after withdrawal of Sake supply, rats were sacrificed, and the whole brain and liver tissues dissected for analyses. In general, molecular changes in brain were found to be less than those in liver. Transcriptomics data revealed 36 and 9, and 80 and 62 up- and down-regulated genes, in the brain and liver, respectively, with binding and catalytic activity gene categories the most prominently changed. Results suggested Sake-induced fragility of brain and liver toxicity/damage, though no significant abnormalities in growth were seen. At protein level, a striking decrease was found in the expression of NADH dehydrogenase (ubiquinone) Fe-S protein 1 in brain, suggesting attenuation of mitochondrial metabolism. In liver, results again suggested an attenuation of mitochondrial function and, in addition, glycoproteins with unknown function were induced at protein and gene levels, suggesting possible changes in glycoprotein binding in that organ. Metabolomic analysis of brain revealed significant increases in valine, arginine/ornithine, alanine, glutamine, and choline with decreases in isoleucine, N-acetyl aspartate, taurine, glutamate, and gamma aminobutyric acid. Our results provide a detailed inventory of molecular components of both brain and liver after Sake intake, and may help to better understand effects of chronic Sake drinking.


Subject(s)
Alcoholic Beverages , Brain Chemistry , Ethanol/pharmacology , Gene Expression Profiling , Liver/chemistry , ARNTL Transcription Factors , Animals , Basic Helix-Loop-Helix Transcription Factors , Brain Chemistry/drug effects , Electrophoresis, Gel, Two-Dimensional , Ethanol/administration & dosage , Female , Gene Expression Regulation , Japan , Liver/drug effects , Metabolomics , Multivariate Analysis , NADH Dehydrogenase , Nuclear Magnetic Resonance, Biomolecular , Oligonucleotide Array Sequence Analysis , Oxidative Stress , Pregnancy , Proteomics , Rats , Rats, Inbred F344 , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
18.
J Mol Biol ; 348(2): 265-79, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15811367

ABSTRACT

The Quaking protein belongs to the family of STAR/GSG domain RNA-binding proteins and is involved in multiple cell signalling and developmental processes in vertebrates, including the formation of myelin. Heteronuclear NMR methods were used to determine the solution structure of a 134 residue fragment spanning the KH and QUA2 homology regions of the Quaking protein from Xenopus laevis (pXqua) in the absence of RNA. The protein is shown to adopt an extended type I KH domain fold that is connected to a structured alpha-helix in the C-terminal QUA2 region by means of a highly flexible linker. A comparison with the solution structure of the related protein splicing factor 1 (SF1) indicates that most aspects of the RNA-binding interface are conserved in pXqua, although the "variable loop" region that follows the second beta-strand possesses two additional alpha-helices. The structure of pXqua provides an appropriate template for building models of important homologues, such as GLD-1 and Sam68. Measurements of the (15)N relaxation parameters of pXqua confirm that the polypeptide backbone of the QUA2 region is more dynamic than that of the KH portion, and that the C-terminal helix is partially structured in the absence of RNA. By comparison with a random coil reference state, the nascent structure in the QUA2 region is estimated to contribute 15.5kJmol(-1) to the change in conformational free energy that occurs on forming a complex with RNA. Since STAR/GSG proteins may regulate alternative splicing by competing with SF1 in the nucleus for specific branch-point sequences that signal intronic RNA, the formation of secondary structure in the QUA2 region in the unbound state of pXqua has important functional consequences.


Subject(s)
RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , Xenopus laevis , Amino Acid Sequence , Animals , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...