Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206919

ABSTRACT

The cleaning of acrylic emulsion paint surfaces poses a great challenge in the conservation field, due to their high water sensitivity. In this article, we present easy-to-make polymer hydrogels, made by UV-photopolymerization, that show excellent cleaning properties. The formulation of hydrogels obtained by UV-curing and their performance as dry cleaners for acrylic paints was investigated. First, different hydrogel formulations based on functional acrylic monomers were used to formulate a series of UV cross-linked hydrogels by fast UV photopolymerization. Their effectiveness on surface dirt removal was investigated by SEM microscopy and colorimetry. The hydrogels showed excellent cleaning properties and controlled water release, and they still performed satisfactorily after several cleaning uses. The obtained UV-hydrogels were compared to the well-known agar gels, showing benefits in terms of reducing excess water. This article shows that easy-to-make UV-cured hydrogels are an efficient tool for the cleaning of surface dirt from water-sensitive paintings, overcoming the limits of traditional cleaning methods.

2.
J Chromatogr A ; 1353: 10-27, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24794936

ABSTRACT

Method validation is a mandatory step in bioanalysis, to evaluate the ability of developed methods in providing reliable results for their routine application. Even if some organisations have developed guidelines to define the different parameters to be included in method validation (FDA, EMA); there are still some ambiguous concepts in validation criteria and methodology that need to be clarified. The methodology to calculate fundamental parameters such as the limit of quantification has been defined in several ways without reaching a harmonised definition, which can lead to very different values depending on the applied criterion. Other parameters such as robustness or ruggedness are usually omitted and when defined there is not an established approach to evaluate them. Especially significant is the case of the matrix effect evaluation which is one of the most critical points to be studied in LC-MS methods but has been traditionally overlooked. Due to the increasing importance of bioanalysis this scenario is no longer acceptable and harmonised criteria involving all the concerned parties should be arisen. The objective of this review is thus to discuss and highlight several essential aspects of method validation, focused in bioanalysis. The overall validation process including common validation parameters (selectivity, linearity range, precision, accuracy, stability…) will be reviewed. Furthermore, the most controversial parameters (limit of quantification, robustness and matrix effect) will be carefully studied and the definitions and methodology proposed by the different regulatory bodies will be compared. This review aims to clarify the methodology to be followed in bioanalytical method validation, facilitating this time consuming step.


Subject(s)
Chromatography, Liquid , Mass Spectrometry , Validation Studies as Topic , Chromatography, Liquid/methods , Indicator Dilution Techniques , Mass Spectrometry/methods , Reproducibility of Results
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(28): 2685-92, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20846917

ABSTRACT

A simple, fast and validated method is reported for the simultaneous analysis, in human plasma, of several drugs usually combined in cardiovascular therapy (atenolol, bisoprolol, hydrochlorothiazide, chlorthalidone, salicylic acid, enalapril and its active metabolite enalaprilat, valsartan and fluvastatin) using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI), working in multiple reaction monitoring mode (MRM). Separation of analytes and internal standard (pravastatin) was performed on a Luna C18(2) (150mm×4.6mm, 3µm) column using a gradient elution mode with a run time of 15min. The mobile phase consisted of a mixture of acetonitrile and water containing 0.01% formic acid and 10mM ammonium formate at pH 4.1. Sample treatment consisted of a simple protein precipitation with acetonitrile, enabling a fast analysis. The method showed good linearity, precision (RSD% values between 0.7% and 12.7%) and accuracy (relative error values between 0.9% and 14.0%). Recoveries were within 68-106% range and the ion-suppression was not higher than 22% for any analyte. The method was successfully applied to plasma samples obtained from patients under combined cardiovascular treatment.


Subject(s)
Atenolol/blood , Bisoprolol/blood , Cardiovascular Agents/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Ammonium Sulfate/chemistry , Drug Stability , Formates/chemistry , Humans , Reproducibility of Results , Sensitivity and Specificity
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(27): 3045-53, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19660995

ABSTRACT

Ultra-performance liquid chromatography (UPLC) was investigated as a faster alternative to high-performance liquid chromatography (HPLC) for the simultaneous analysis of drugs usually prescribed in cardiovascular therapy. Upon a previously developed and validated solid phase extraction (SPE)-HPLC-photodiode array (PDA)-fluorescence (FLR) method, separation of chlorthalidone (CLTD; diuretic), valsartan and its metabolite (VAL and VAL-M1 respectively; angiotensin II receptor antagonist drugs) and fluvastatin (FLUV; statin) was performed in human plasma using an RP C18 column (50mmx2.1mm, 1.7microm, Waters Acquity UPLC (BEH)) and a tunable UV-vis (TUV) detector. After method transfer, different system variables were modulated to study the evolution of responses of the analytes and the endogenous interferences. The improved method was fully validated and the results were compared with its precursor HPLC method relating to analysis time, efficiency and sensitivity. The studied compounds were separated in less than 8min and the method showed good linearity (20-3000microg/L for chlorthalidone, 110-1100microg/L for valsartan-M1, 67-1900microg/L for valsartan and 48-1100microg/L for fluvastatin), precision and accuracy. The proposed method was found to be reproducible (RSD<10%), accurate (RE<15%), robust and suitable for quantitative analysis of the studied drugs in plasma obtained from patients under combined cardiovascular treatment.


Subject(s)
Cardiovascular Agents/blood , Chlorthalidone/blood , Chromatography, Liquid/methods , Fatty Acids, Monounsaturated/blood , Indoles/blood , Spectrophotometry, Ultraviolet/methods , Tetrazoles/blood , Valine/analogs & derivatives , Drug Stability , Fluvastatin , Humans , Linear Models , Reproducibility of Results , Sensitivity and Specificity , Time Factors , Valine/blood , Valsartan
5.
J Pharm Biomed Anal ; 50(4): 630-9, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19070983

ABSTRACT

This paper reports the chemometrical optimization and the validation of a quantitative high performance liquid chromatography-photodiode array-fluorescence (HPLC-PDA-Fluo) method for the simultaneous analysis, in human plasma, of drugs usually combined in cardiovascular therapy. Separation of chlorthalidone (CLTD), valsartan (VAL), valsartan-M1 (VAL-M1), fluvastatin (FLUV) and the internal standard (IS) candesartan cilexetil was performed on a dC18 Atlantis column (100 mm x 3.9 mm, 3 microm) using a gradient with a run time of 15 min. The mobile phase consisted of a mixture of acetonitrile and water containing 0.01% of formic acid and 10 mM of ammonium formate at pH 4.1. UV and fluorimetric (valsartan, its metabolite and fluvastatin) detectors were used. The sample preparation consisted of protein precipitation using acetonitrile suited to a solid-phase extraction (SPE) on a Strata-X cartridge for sample clean-up. Method validation was developed following the recommendations for bioanalytical method validation of International Conference on Harmonisation (ICH) and Food and Drug Administration (FDA) organizations. The method showed good linearity (31-3000 microg/l for chlorthalidone, 20-1000 microg/l for valsartan-M1, 10-5000 microg/l for valsartan and 14-1000 microg/l for fluvastatin), precision and accuracy. Recoveries were in the range of 78-91%. This method allowed the determination of these drugs in human plasma samples obtained from patients under cardiovascular treatment.


Subject(s)
Cardiovascular Agents/chemistry , Chromatography, High Pressure Liquid/methods , Cardiovascular Diseases/drug therapy , Drug Therapy, Combination , Humans , Reproducibility of Results , Solid Phase Extraction/methods , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...