Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Malar J ; 23(1): 159, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773528

ABSTRACT

BACKGROUND: Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS: A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS: Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS: A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Primaquine , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Antimalarials/pharmacokinetics , Antimalarials/blood , Antimalarials/administration & dosage , Primaquine/pharmacokinetics , Primaquine/blood , Primaquine/administration & dosage
2.
Lancet Microbe ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38705163

ABSTRACT

BACKGROUND: Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS: In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS: Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION: These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING: Bill & Melinda Gates Foundation.

3.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37625434

ABSTRACT

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Infant , Child, Preschool , Mali/epidemiology , Burkina Faso/epidemiology , Seasons , Malaria/epidemiology , Malaria/prevention & control , Vaccination , Chemoprevention , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
4.
Int J Infect Dis ; 139: 171-175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114057

ABSTRACT

OBJECTIVES: The association between thrombocytopenia and parasite density or disease severity is described in numerous studies. In recent years, several studies described the protective role of platelets in directly killing Plasmodium parasites, mediated by platelet factor 4 (PF4) binding to Duffy antigen. This study aimed to evaluate the protective role of platelets in young children who are Duffy antigen-negative, such as those in sub-Saharan Africa. METHODS: A zero-inflated negative binomial model was used to relate platelet count and parasite density data collected in a longitudinal birth cohort. Platelet factors were measured by enzyme-linked immunosorbent assay in samples collected from malaria-infected children who participated in a cross-sectional study. RESULTS: We described that an increase of 10,000 platelets/µl was associated with a 2.76% reduction in parasite count. Increasing levels of PF4 and CXCL7 levels were also significantly associated with a reduction in parasite count. CONCLUSIONS: Platelets play a protective role in reducing parasite burden in Duffy-negative children, possibly mediated through activation of the innate immune system.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Child , Animals , Humans , Child, Preschool , Plasmodium falciparum , Platelet Count , Cross-Sectional Studies , Malaria, Falciparum/parasitology
5.
Sci Rep ; 13(1): 9522, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308503

ABSTRACT

Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Mali , Antiparasitic Agents , Genetic Variation
6.
J Infect Dis ; 227(2): 171-178, 2023 01 11.
Article in English | MEDLINE | ID: mdl-35849702

ABSTRACT

BACKGROUND: The frequency and clinical presentation of malaria infections show marked heterogeneity in epidemiological studies. However, deeper understanding of this variability is hampered by the difficulty in quantifying all relevant factors. Here, we report the history of malaria infections in twins, who are exposed to the same in utero milieu, share genetic factors, and are similarly exposed to vectors. METHODS: Data were obtained from a Malian longitudinal birth cohort. Samples from 25 twin pairs were examined for malaria infection and antibody responses. Bayesian models were developed for the number of infections during follow-up. RESULTS: In 16 of 25 pairs, both children were infected and often developed symptoms. In 8 of 25 pairs, only 1 twin was infected, but usually only once or twice. Statistical models suggest that this pattern is not inconsistent with twin siblings having the same underlying infection rate. In a pair with discordant hemoglobin genotype, parasite densities were consistently lower in the child with hemoglobin AS, but antibody levels were similar. CONCLUSIONS: By using a novel design, we describe residual variation in malaria phenotypes in naturally matched children and confirm the important role of environmental factors, as suggested by the between-twin pair heterogeneity in malaria history.


Subject(s)
Malaria , Twins, Monozygotic , Child, Preschool , Humans , Bayes Theorem , Malaria/epidemiology , Twins, Monozygotic/genetics
7.
Front Immunol ; 14: 1330962, 2023.
Article in English | MEDLINE | ID: mdl-38274790

ABSTRACT

In malaria-endemic areas, pregnant women are more susceptible to Plasmodium falciparum infection, especially primigravidae. During pregnancy, parasites sequester in the placenta and bind to the receptor chondroitin sulfate (CSA). This unique adhesion is mediated by the parasite protein VAR2CSA expressed on the surface of infected erythrocytes (IE). Placental malaria is associated with poor pregnancy outcomes including perinatal mortality, preterm delivery, small for gestational age (SGA) and low birthweight deliveries. Over successive pregnancies, women acquire functional antibodies that inhibit IE adhesion to CSA. Here, we examine the development of anti-adhesion activity and the breadth of anti-adhesion activity as a function of number of previous pregnancies, using samples collected from pregnant women living in an area with high seasonal malaria transmission. Women reached plateau levels of anti-adhesion activity and breadth of anti-adhesion activity after 5 pregnancies. We related the level of anti-adhesion activity and reactivity with surface IE to SGA 19/232 pregnancies resulted in SGA, and report that an increase of 10% in median anti-adhesion activity reduced the odds of SGA by 13% and this relationship approached significance. Further, at an anti-adhesion activity level of 43.7%, an increase of 10% in the breadth of activity significantly reduced the odds of SGA by 21.5%. Antibodies that recognize IE surface increased over successive pregnancies, but were not associated with a reduction in SGA. These results can serve as a guideline for assessing vaccine candidates aiming to reduce poor pregnancy outcomes associated with placental malaria.


Subject(s)
Malaria , Plasmodium falciparum , Infant, Newborn , Female , Humans , Pregnancy , Placenta/metabolism , Chondroitin Sulfates , Gravidity , Antigens, Protozoan , Antibodies, Protozoan
8.
Front Med (Lausanne) ; 9: 1061538, 2022.
Article in English | MEDLINE | ID: mdl-36569122

ABSTRACT

In Sub-Saharan Africa, malaria continues to be associated with adverse pregnancy outcomes including stillbirth, early neonatal death, preterm delivery, and low birth weight. Current preventive measures are insufficient and new interventions are urgently needed. However, before such interventions can be tested in pregnant women, background information on pregnancy outcomes in this target population must be collected. We conducted an observational study in Ouélessébougou, Mali, a malaria-endemic area where first antenatal visit commonly occurs during the second trimester of pregnancy, hindering calculation of miscarriage rate in the population. To accurately determine the rate of miscarriage, 799 non-pregnant women of child-bearing age were enrolled and surveyed via monthly follow up visits that included pregnancy tests. Out of 505 women that completed the study, 364 became pregnant and 358 pregnancies were analyzed: 43 (12%) resulted in miscarriage, 28 (65.1%) occurred during the first trimester of pregnancy. We also determined rates of stillbirth, neonatal death, preterm delivery, and small for gestational age. The results showed high rate of miscarriage during the first trimester and established a basis to evaluate new interventions to prevent pregnancy malaria. This survey design enabled identification of first trimester miscarriages that are often missed by studies conducted in antenatal clinics. Clinical trial registration: [https://clinicaltrials.gov/], identifier [NCT0297 4608].

9.
Malar J ; 21(1): 372, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36474274

ABSTRACT

BACKGROUND: In some settings, sensitive field diagnostic tools may be needed to achieve elimination of falciparum malaria. To this end, rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum protein HRP-2 are being developed with increasingly lower limits of detection. However, it is currently unclear how parasite stages that are unaffected by standard drug treatments may contribute to HRP-2 detectability and potentially confound RDT results even after clearance of blood stage infection. This study assessed the detectability of HRP-2 in periods of post-treatment residual gametocytaemia. METHODS: A cohort of 100 P. falciparum infected, gametocyte positive individuals were treated with or without the gametocytocidal drug primaquine (PQ), alongside standard artemisinin-based combination therapy (ACT), in the context of a randomised clinical trial in Ouelessebougou, Mali. A quantitative ELISA was used to measure levels of HRP-2, and compared time to test negativity using a standard and ultra-sensitive RDT (uRDT) between residual gametocyte positive and negative groups. RESULTS: Time to test negativity was longest by uRDT, followed by ELISA and then standard RDT. No significant difference in time to negativity was found between the treatment groups with and without residual gametocytes: uRDT (HR 0.79 [95% CI 0.52-1.21], p = 0.28), RDT (HR 0.77 [95% CI 0.51-1.15], p = 0.20) or ELISA (HR 0.88 [95% CI 0.59-1.32], p = 0.53). Similarly, no difference was observed when adjusting for baseline asexual parasite density. Quantified levels of HRP-2 over time were similar between groups, with differences attributable to asexual parasite densities. Furthermore, no difference in levels of HRP-2 was found between individuals who were or were not infectious to mosquitoes (OR 1.19 [95% CI 0.98-1.46], p = 0.077). CONCLUSIONS: Surviving sexual stage parasites after standard ACT treatment do not contribute to the persistence of HRP-2 antigenaemia, and appear to have little impact on RDT results.


Subject(s)
Plasmodium falciparum , Humans , Mali
10.
Front Immunol ; 13: 959697, 2022.
Article in English | MEDLINE | ID: mdl-35990648

ABSTRACT

Malaria has been hypothesized as a factor that may have reduced the severity of the COVID-19 pandemic in sub-Saharan Africa. To evaluate the effect of recent malaria on COVID-19 we assessed a subgroup of individuals participating in a longitudinal cohort COVID-19 serosurvey that were also undergoing intensive malaria monitoring as part of antimalarial vaccine trials during the 2020 transmission season in Mali. These communities experienced a high incidence of primarily asymptomatic or mild COVID-19 during 2020 and 2021. In 1314 individuals, 711 were parasitemic during the 2020 malaria transmission season; 442 were symptomatic with clinical malaria and 269 had asymptomatic infection. Presence of parasitemia was not associated with new COVID-19 seroconversion (29.7% (211/711) vs. 30.0% (181/603), p=0.9038) or with rates of reported symptomatic seroconversion during the malaria transmission season. In the subsequent dry season, prior parasitemia was not associated with new COVID-19 seroconversion (30.2% (133/441) vs. 31.2% (108/346), p=0.7499), with symptomatic seroconversion, or with reversion from seropositive to seronegative (prior parasitemia: 36.2% (64/177) vs. no parasitemia: 30.1% (37/119), p=0.3842). After excluding participants with asymptomatic infection, clinical malaria was also not associated with COVID-19 serostatus or symptomatic seroconversion when compared to participants with no parasitemia during the monitoring period. In communities with intense seasonal malaria and a high incidence of asymptomatic or mild COVID-19, we did not demonstrate a relationship between recent malaria and subsequent response to COVID-19. Lifetime exposure, rather than recent infection, may be responsible for any effect of malaria on COVID-19 severity.


Subject(s)
COVID-19 , Malaria , Antibody Formation , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Humans , Malaria/epidemiology , Mali/epidemiology , Pandemics , Parasitemia/epidemiology
11.
Lancet Microbe ; 3(5): e336-e347, 2022 05.
Article in English | MEDLINE | ID: mdl-35544095

ABSTRACT

BACKGROUND: Tafenoquine was recently approved as a prophylaxis and radical cure for Plasmodium vivax infection, but its Plasmodium falciparum transmission-blocking efficacy is unclear. We aimed to establish the efficacy and safety of three single low doses of tafenoquine in combination with dihydroartemisinin-piperaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: In this four-arm, single-blind, phase 2, randomised controlled trial, participants were recruited at the Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako in Mali. Eligible participants were aged 12-50 years, with asymptomatic P falciparum microscopy-detected gametocyte carriage, had a bodyweight of 80 kg or less, and had no clinical signs of malaria defined by fever. Participants were randomly assigned (1:1:1:1) to standard treatment with dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus a single dose of tafenoquine (in solution) at a final dosage of 0·42 mg/kg, 0·83 mg/kg, or 1·66 mg/kg. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. Dihydroartemisinin-piperaquine was administered as oral tablets over 3 days (day 0, 1, and 2), as per manufacturer instructions. A single dose of tafenoquine was administered as oral solution on day 0 in parallel with the first dose of dihydroartemisinin-piperaquine. Tafenoquine dosing was based on bodyweight to standardise efficacy and risk variance. The primary endpoint, assessed in the per-protocol population, was median percentage change in mosquito infection rate 7 days after treatment compared with baseline. Safety endpoints included frequency and incidence of adverse events. The final follow-up visit was on Dec 23, 2021; the trial is registered with ClinicalTrials.gov, NCT04609098. FINDINGS: From Oct 29 to Nov 25, 2020, 1091 individuals were screened for eligibility, 80 of whom were enrolled and randomly assigned (20 per treatment group). Before treatment, 53 (66%) individuals were infectious to mosquitoes, infecting median 12·50% of mosquitoes (IQR 3·64-35·00). Within-group reduction in mosquito infection rate on day 7 was 79·95% (IQR 57·15-100; p=0·0005 for difference from baseline) following dihydroartemisinin-piperaquine only, 100% (98·36-100; p=0·0005) following dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg, 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg, and 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg. 55 (69%) of 80 participants had a total of 94 adverse events over the course of the trial; 86 (92%) adverse events were categorised as mild, seven (7%) as moderate, and one (1%) as severe. The most common treatment-related adverse event was mild or moderate headache, which occurred in 15 (19%) participants (dihydroartemisinin-piperaquine n=2; dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg n=6; dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg n=3; and dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg n=4). No serious adverse events occurred. No significant differences in the incidence of all adverse events (p=0·73) or treatment-related adverse events (p=0·62) were observed between treatment groups. INTERPRETATION: Tafenoquine was well tolerated at all doses and accelerated P falciparum gametocyte clearance. All tafenoquine doses showed improved transmission reduction at day 7 compared with dihydroartemisinin-piperaquine alone. These data support the case for further research on tafenoquine as a transmission-blocking supplement to standard antimalarials. FUNDING: Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Portuguese, Spanish and Swahili translations of the abstract see Supplementary Materials section.


Subject(s)
Artemisinins , Malaria, Falciparum , Malaria , Aminoquinolines , Animals , Artemisinins/adverse effects , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Mali/epidemiology , Piperazines , Plasmodium falciparum , Quinolines , Single-Blind Method
13.
J Infect Dis ; 226(3): 521-527, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35290467

ABSTRACT

Plasmodium falciparum-infected erythrocytes that display the variant surface antigen VAR2CSA bind chondroitin sulfate A (CSA) to sequester in placental intervillous spaces, causing severe sequelae for mother and offspring. Here, we establish a placental malaria (PM) monkey model. Pregnant Aotus infected with CSA-binding P. falciparum CS2 parasites during the third trimester developed pronounced sequestration of late-stage parasites in placental intervillous spaces that express VAR2CSA and bind specifically to CSA. Similar to immune multigravid women, a monkey infected with P. falciparum CS2 parasites over successive pregnancies acquired antibodies against VAR2CSA, with potent functional activity that was boosted upon subsequent pregnancy infections. Aotus also developed functional antibodies after multiple acute PM episodes and subsequent VAR2CSA immunization. In summary, P. falciparum infections in pregnant Aotus monkeys recapitulate all the prominent features of human PM infection and immunity, and this model can be useful for basic mechanistic studies and preclinical studies to qualify candidate PM vaccines. Clinical Trials Registration: NCT02471378.


Subject(s)
Malaria, Falciparum , Malaria , Pregnancy Complications, Parasitic , Animals , Antibodies, Protozoan , Antigens, Protozoan , Aotidae , Chondroitin Sulfates , Erythrocytes , Female , Humans , Placenta , Plasmodium falciparum , Pregnancy
14.
Elife ; 112022 02 01.
Article in English | MEDLINE | ID: mdl-35103596

ABSTRACT

Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is known that naturally acquired antibodies target both variant-specific and conserved epitopes. It is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA variants. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. In two independent antibody purification/depletion experiments with permutated order of VAR2CSA variants, IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays conserved epitopes that are targeted by neutralizing (or binding-inhibitory) antibodies shared by multiple parasite strains, including maternal isolates. This suggests that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants.


Contracting malaria during pregnancy ­ especially a first pregnancy ­ can lead to a severe, placental form of the disease that is often fatal. Red blood cells infected with the malaria parasite Plasmodium falciparum display a protein, VAR2CSA, which can recognize and bind CSA molecules present on placental cells and in placental blood spaces. This leads to the infected blood cells accumulating in the placenta and inducing harmful inflammation. Having been exposed to the parasite in prior pregnancies generates antibodies that target VAR2CSA, stopping the infected blood cells from latching onto placental CSA or tagging them for immune destruction. Overall, this makes placental malaria less severe in following pregnancies, and suggests that vaccines could be developed based on VAR2CSA. However, this protein has regions that can vary in structure, meaning that P. falciparaum can generate many VAR2CSA variants. Individuals exposed to the parasite naturally generate antibodies that block a wide array of variants from attaching to CSA. In contrast, first-generation vaccines based on VAR2CSA fragments have only induced variant-specific antibodies, therefore offering limited protection against infection. As a response, Doritchamou et al. set out to find VAR2CSA structures that could be recognized by antibodies targeting an array of variants. Blood was obtained from women who had had multiple pregnancies and were immune to malaria. Their plasma was passed over five different large VAR2CSA variants in order to isolate and purify antibodies that attached to these structures. Doritchamou et al. found that antibodies binding to individual VAR2CSA structures could also recognise a wide array of VAR2CSA variants and blocked all tested parasites from sticking to CSA. While further research is needed, these findings highlight antibodies that cross-react to diverse VAR2CSA variants and could be used to design more effective vaccines targeting placental malaria.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Antigens, Protozoan , Antigens, Surface , Broadly Neutralizing Antibodies , Chondroitin Sulfates/metabolism , Epitopes , Erythrocytes/parasitology , Female , Humans , Immunoglobulin G , Malaria/prevention & control , Malaria, Falciparum/parasitology , Placenta/metabolism , Plasmodium falciparum/physiology , Pregnancy
15.
Malar J ; 21(1): 39, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135546

ABSTRACT

BACKGROUND: In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in the health district of Ouelessebougou, Mali. METHODS: In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0-5 years were randomly selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site and year) samples. RESULTS: At each survey, approximately 50-100 individual samples were analysed by PCR amplification and a total of 1,164 samples were analysed by deep sequencing with an average read depth of 18,018-36,918 after pooling by site and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014-2016). After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to baseline (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6-9.3% following 1 and 2 years of SMC, respectively. CONCLUSION: Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Amodiaquine/pharmacology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chemoprevention , Child , Child, Preschool , Cross-Sectional Studies , Drug Combinations , Drug Resistance/genetics , Humans , Infant , Infant, Newborn , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Seasons , Sulfadoxine/pharmacology
16.
Lancet Microbe ; 3(1): e41-e51, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028628

ABSTRACT

BACKGROUND: Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS: Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION: These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section.


Subject(s)
Antimalarials , Malaria, Falciparum , Adolescent , Adult , Animals , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Artesunate/therapeutic use , Child , Child, Preschool , Drug Combinations , Humans , Malaria, Falciparum/prevention & control , Mali/epidemiology , Middle Aged , Naphthyridines/therapeutic use , Piperazines , Primaquine/therapeutic use , Quinolines , Single-Blind Method , Young Adult
17.
Blood ; 139(15): 2361-2376, 2022 04 14.
Article in English | MEDLINE | ID: mdl-34871370

ABSTRACT

Anemia is common among young children infected with Plasmodium falciparum and severe malarial anemia (SMA) is a major cause of their mortality. Two major mechanisms cause malarial anemia: hemolysis of uninfected as well as infected erythrocytes and insufficient erythropoiesis. In a longitudinal birth cohort in Mali, we commonly observed marked hemoglobin reductions during P falciparum infections with a small proportion that progressed to SMA. We sought biomarkers of these processes using quantitative proteomic analysis on plasma samples from 9 P falciparum-infected children, comparing those with reduced hemoglobin (with or without SMA) vs those with stable hemoglobin. We identified higher plasma levels of circulating 20S proteasome and lower insulin-like growth factor-1 (IGF-1) levels in children with reduced hemoglobin. We confirmed these findings in independent enzyme-linked immunosorbent assay-based validation studies of subsets of children from the same cohort (20S proteasome, N = 71; IGF-1, N = 78). We speculate that circulating 20S proteasome plays a role in digesting erythrocyte membrane proteins modified by oxidative stress, resulting in hemolysis, whereas decreased IGF-1, a critical factor for erythroid maturation, might contribute to insufficient erythropoiesis. Quantitative plasma proteomics identified soluble mediators that may contribute to the major mechanisms underlying malarial anemia. This study was registered at www.clinicaltrials.gov as #NCT01168271.


Subject(s)
Anemia , Malaria, Falciparum , Malaria , Anemia/etiology , Biomarkers , Child , Child, Preschool , Hemoglobins , Hemolysis , Humans , Insulin-Like Growth Factor I , Malaria, Falciparum/complications , Plasmodium falciparum , Proteasome Endopeptidase Complex , Proteomics
18.
Clin Pharmacol Ther ; 111(3): 676-685, 2022 03.
Article in English | MEDLINE | ID: mdl-34905220

ABSTRACT

Clinical studies have shown that adding a single 0.25 mg base/kg dose of primaquine to standard antimalarial regimens rapidly sterilizes Plasmodium falciparum gametocytes. However, the mechanism of action and overall impact on malaria transmission is still unknown. Using data from 81 adult Malians with P. falciparum gametocytemia who received the standard dihydroartemisinin-piperaquine treatment course and were randomized to receive either a single dose of primaquine between 0.0625 and 0.5 mg base/kg or placebo, we characterized the pharmacokinetic-pharmacodynamic relationships for transmission blocking activity. Both gametocyte clearance and mosquito infectivity were assessed. A mechanistically linked pharmacokinetic-pharmacodynamic model adequately described primaquine and carboxy-primaquine pharmacokinetics, gametocyte dynamics, and mosquito infectivity at different clinical doses of primaquine. Primaquine showed a dose-dependent gametocytocidal effect that precedes clearance. A single low dose of primaquine (0.25 mg/kg) rapidly prevented P. falciparum transmissibility.


Subject(s)
Antimalarials/pharmacology , Antimalarials/pharmacokinetics , Culicidae/parasitology , Primaquine/pharmacology , Primaquine/pharmacokinetics , Animals , Artemisinins/pharmacokinetics , Artemisinins/pharmacology , Drug Therapy, Combination/methods , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Quinolines/pharmacokinetics , Quinolines/pharmacology
19.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Article in English | MEDLINE | ID: mdl-34894221

ABSTRACT

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibody Formation , Child , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Seasons , Vaccination
20.
Commun Biol ; 4(1): 1309, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799664

ABSTRACT

Plasmodium falciparum-infected erythrocytes (IE) sequester in the placenta via surface protein VAR2CSA, which binds chondroitin sulfate A (CSA) expressed on the syncytiotrophoblast surface, causing placental malaria (PM) and severe adverse outcomes in mothers and their offspring. VAR2CSA belongs to the PfEMP1 variant surface antigen family; PfEMP1 proteins mediate IE adhesion and facilitate parasite immunoevasion through antigenic variation. Here we produced deglycosylated (native-like) and glycosylated versions of seven recombinant full-length VAR2CSA ectodomains and compared them for antigenicity and adhesiveness. All VAR2CSA recombinants bound CSA with nanomolar affinity, and plasma from Malian pregnant women demonstrated antigen-specific reactivity that increased with gravidity and trimester. However, allelic and glycosylation variants differed in their affinity to CSA and their serum reactivities. Deglycosylated proteins (native-like) showed higher CSA affinity than glycosylated proteins for all variants except NF54. Further, the gravidity-related increase in serum VAR2CSA reactivity (correlates with acquisition of protective immunity) was absent with the deglycosylated form of atypical M200101 VAR2CSA with an extended C-terminal region. Our findings indicate significant inter-allelic differences in adhesion and seroreactivity that may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design.


Subject(s)
Antigens, Protozoan/immunology , Immunogenicity, Vaccine , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Female , Humans , Malaria, Falciparum/prevention & control , Placenta/immunology , Pregnancy , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...