Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
FEBS Lett ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726814

ABSTRACT

Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.

2.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617234

ABSTRACT

Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by Pericentriolar Material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and microtubule formation remain unanswered, in part due to limited availability of molecular-resolution structural analyses in situ. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features including a cartwheel in daughter centrioles, and incomplete microtubule doublets surrounded by a star-shaped density in mother centrioles. We find that centriole and PCM microtubules differ in protofilament number (13 versus 11) indicating distinct nucleation mechanisms. This difference could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubules. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.

3.
Nature ; 628(8006): 47-56, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570716

ABSTRACT

Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.


Subject(s)
Cell Biology , Cells , Cryoelectron Microscopy , Electron Microscope Tomography , Cryoelectron Microscopy/methods , Cryoelectron Microscopy/trends , Electron Microscope Tomography/methods , Electron Microscope Tomography/trends , Macromolecular Substances/analysis , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/ultrastructure , Cell Biology/instrumentation , Cells/chemistry , Cells/cytology , Cells/metabolism , Cells/ultrastructure , Humans
4.
J Struct Biol ; 216(2): 108067, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38367824

ABSTRACT

Cellular cryo-electron tomography (cryo-ET) has emerged as a key method to unravel the spatial and structural complexity of cells in their near-native state at unprecedented molecular resolution. To enable quantitative analysis of the complex shapes and morphologies of lipid membranes, the noisy three-dimensional (3D) volumes must be segmented. Despite recent advances, this task often requires considerable user intervention to curate the resulting segmentations. Here, we present ColabSeg, a Python-based tool for processing, visualizing, editing, and fitting membrane segmentations from cryo-ET data for downstream analysis. ColabSeg makes many well-established algorithms for point-cloud processing easily available to the broad community of structural biologists for applications in cryo-ET through its graphical user interface (GUI). We demonstrate the usefulness of the tool with a range of use cases and biological examples. Finally, for a large Mycoplasma pneumoniae dataset of 50 tomograms, we show how ColabSeg enables high-throughput membrane segmentation, which can be used as valuable training data for fully automated convolutional neural network (CNN)-based segmentation.

5.
Adv Mater ; 36(11): e2309547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088507

ABSTRACT

Biogenic crystals present a variety of complex morphologies that form with exquisite fidelity. In the case of the intricate morphologies of coccoliths, calcite crystals produced by marine algae, only a single set of crystallographic facets is utilized. It is unclear which growth process can merge this simple crystallographic habit with the species-specific architectures. Here, a suite of state-of-the-art electron microscopies is used to follow both the growth trajectories of the crystals ex situ, and the cellular environment in situ, in the species Emiliania huxleyi. It is shown that crystal growth alternates between a space filling and a skeletonized growth mode, where the crystals elongate via their stable crystallographic facets, but the final morphology is a manifestation of growth arrest. This process is reminiscent of the balance between reaction-limited and transport-limited growth regimes underlying snowflake formation. It is suggested that localized ion transport regulates the kinetic instabilities that are required for transport-limited growth, leading to reproducible morphologies.

6.
Nat Methods ; 20(12): 1900-1908, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932397

ABSTRACT

Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.


Subject(s)
Neural Networks, Computer , Organelles , Humans , Cryoelectron Microscopy/methods , Ligands , Organelles/ultrastructure , Electron Microscope Tomography/methods
7.
Nat Struct Mol Biol ; 30(12): 1902-1912, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857822

ABSTRACT

Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.


Subject(s)
Glutaminase , Mitophagy , Mice , Humans , Animals , Glutaminase/chemistry , Glutaminase/metabolism , Glutamine/metabolism , Mitochondria/metabolism
8.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116470

ABSTRACT

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Subject(s)
Mumps virus , Persistent Infection , Humans , Mumps virus/physiology , Nucleocapsid , Phosphoproteins/metabolism , Virus Replication
9.
Proc Natl Acad Sci U S A ; 120(15): e2213149120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37027429

ABSTRACT

Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.


Subject(s)
Electron Microscope Tomography , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Cluster Analysis , Molecular Structure , Electron Microscope Tomography/methods , Macromolecular Substances/chemistry , Cryoelectron Microscopy/methods
10.
Dev Cell ; 58(7): 616-632.e6, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36990090

ABSTRACT

3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.


Subject(s)
Cell Culture Techniques, Three Dimensional , Microscopy , Organoids , Animals , Humans , Mice , Cell Culture Techniques, Three Dimensional/methods , Microscopy, Electron , Organoids/diagnostic imaging , Organoids/physiology , Organoids/ultrastructure , Colorectal Neoplasms/pathology
11.
Nat Methods ; 20(2): 284-294, 2023 02.
Article in English | MEDLINE | ID: mdl-36690741

ABSTRACT

Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol. By comparing DeePiCt to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, applying pre-trained networks to a HeLa cell tomogram demonstrates that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate use by the community.


Subject(s)
Mitochondria , Ribosomes , Humans , HeLa Cells , Electron Microscope Tomography/methods , Endoplasmic Reticulum , Image Processing, Computer-Assisted/methods
12.
Methods Mol Biol ; 2563: 297-324, 2023.
Article in English | MEDLINE | ID: mdl-36227480

ABSTRACT

The assembly of membraneless compartments by phase separation has recently been recognized as a mechanism for spatial and temporal organization of biomolecules within the cell. The functions of such mesoscale assemblies, termed biomolecular condensates, depend on networks of multivalent interactions between proteins, their structured and disordered domains, and commonly also include nucleic acids. Cryo-electron tomography is an ideal tool to investigate the three-dimensional architecture of such pleomorphic interaction networks at nanometer resolution and thus form inferences about function. However, preparation of suitable cryo-electron microscopy samples of condensates may be prone to protein denaturation, low retention of material on the sample carrier, and contamination associated with cryo-sample preparation and transfers. Here, we describe a series of protocols designed to obtain high-quality cryo-electron tomography data of biomolecular condensates reconstituted in vitro. These include critical screening by light microscopy, cryo-fixation by plunge freezing, sample loading into an electron microscope operated at liquid nitrogen temperature, data collection, processing of the data into three-dimensional tomograms, and their interpretation.


Subject(s)
Electron Microscope Tomography , Nucleic Acids , Biomolecular Condensates , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Nitrogen
14.
Nature ; 610(7930): 205-211, 2022 10.
Article in English | MEDLINE | ID: mdl-36171285

ABSTRACT

Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.


Subject(s)
Cryoelectron Microscopy , Mycoplasma pneumoniae , Protein Biosynthesis , Ribosomal Proteins , Ribosomes , Anti-Bacterial Agents/pharmacology , Mycoplasma pneumoniae/cytology , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/metabolism , Mycoplasma pneumoniae/ultrastructure , Peptide Chain Elongation, Translational/drug effects , Polyribosomes/drug effects , Polyribosomes/metabolism , Polyribosomes/ultrastructure , Protein Biosynthesis/drug effects , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , Ribosomes/drug effects , Ribosomes/metabolism , Ribosomes/ultrastructure
16.
Sci Adv ; 8(16): eabn5725, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35442737

ABSTRACT

Preribosomal RNA is selectively transcribed by RNA polymerase (Pol) I in eukaryotes. The yeast transcription factor upstream activating factor (UAF) represses Pol II transcription and mediates Pol I preinitiation complex (PIC) formation at the 35S ribosomal RNA gene. To visualize the molecular intermediates toward PIC formation, we determined the structure of UAF in complex with native promoter DNA and transcription factor TATA-box-binding protein (TBP). We found that UAF recognizes DNA using a hexameric histone-like scaffold with markedly different interactions compared with the nucleosome and the histone-fold-rich transcription factor IID (TFIID). In parallel, UAF positions TBP for Core Factor binding, which leads to Pol I recruitment, while sequestering it from DNA and Pol II/III-specific transcription factors. Our work thus reveals the structural basis of RNA Pol selection by a transcription factor.


Subject(s)
DNA-Binding Proteins , RNA Polymerase I , DNA/metabolism , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , RNA/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins , Transcription Factors/metabolism , Transcription, Genetic
17.
Cell ; 185(8): 1308-1324.e23, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35325593

ABSTRACT

Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Embryo, Nonmammalian/metabolism , Animals , Cytoplasmic Ribonucleoprotein Granules , Drosophila/embryology , Drosophila Proteins/genetics , Embryonic Development , Oocytes/metabolism , RNA/metabolism
18.
Elife ; 102021 12 24.
Article in English | MEDLINE | ID: mdl-34951584

ABSTRACT

Lamella micromachining by focused ion beam milling at cryogenic temperature (cryo-FIB) has matured into a preparation method widely used for cellular cryo-electron tomography. Due to the limited ablation rates of low Ga+ ion beam currents required to maintain the structural integrity of vitreous specimens, common preparation protocols are time-consuming and labor intensive. The improved stability of new-generation cryo-FIB instruments now enables automated operations. Here, we present an open-source software tool, SerialFIB, for creating automated and customizable cryo-FIB preparation protocols. The software encompasses a graphical user interface for easy execution of routine lamellae preparations, a scripting module compatible with available Python packages, and interfaces with three-dimensional correlative light and electron microscopy (CLEM) tools. SerialFIB enables the streamlining of advanced cryo-FIB protocols such as multi-modal imaging, CLEM-guided lamella preparation and in situ lamella lift-out procedures. Our software therefore provides a foundation for further development of advanced cryogenic imaging and sample preparation protocols.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Specimen Handling/methods , Animals , Chlamydomonas reinhardtii , Drosophila melanogaster , Haptophyta , HeLa Cells , Humans , Saccharomyces cerevisiae , Software
19.
Elife ; 102021 12 21.
Article in English | MEDLINE | ID: mdl-34931611

ABSTRACT

The unique membrane organization of the rod outer segment (ROS), the specialized sensory cilium of rod photoreceptor cells, provides the foundation for phototransduction, the initial step in vision. ROS architecture is characterized by a stack of identically shaped and tightly packed membrane disks loaded with the visual receptor rhodopsin. A wide range of genetic aberrations have been reported to compromise ROS ultrastructure, impairing photoreceptor viability and function. Yet, the structural basis giving rise to the remarkably precise arrangement of ROS membrane stacks and the molecular mechanisms underlying genetically inherited diseases remain elusive. Here, cryo-electron tomography (cryo-ET) performed on native ROS at molecular resolution provides insights into key structural determinants of ROS membrane architecture. Our data confirm the existence of two previously observed molecular connectors/spacers which likely contribute to the nanometer-scale precise stacking of the ROS disks. We further provide evidence that the extreme radius of curvature at the disk rims is enforced by a continuous supramolecular assembly composed of peripherin-2 (PRPH2) and rod outer segment membrane protein 1 (ROM1) oligomers. We suggest that together these molecular assemblies constitute the structural basis of the highly specialized ROS functional architecture. Our Cryo-ET data provide novel quantitative and structural information on the molecular architecture in ROS and substantiate previous results on proposed mechanisms underlying pathologies of certain PRPH2 mutations leading to blindness.


Subject(s)
Rod Cell Outer Segment/ultrastructure , Animals , Mice
20.
Science ; 374(6573): eabd9776, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34762489

ABSTRACT

In eukaryotic cells, nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes and mediate nucleocytoplasmic exchange. They are made of 30 different nucleoporins and form a cylindrical architecture around an aqueous central channel. This architecture is highly dynamic in space and time. Variations in NPC diameter have been reported, but the physiological circumstances and the molecular details remain unknown. Here, we combined cryo­electron tomography with integrative structural modeling to capture a molecular movie of the respective large-scale conformational changes in cellulo. Although NPCs of exponentially growing cells adopted a dilated conformation, they reversibly constricted upon cellular energy depletion or conditions of hypertonic osmotic stress. Our data point to a model where the nuclear envelope membrane tension is linked to the conformation of the NPC.


Subject(s)
Nuclear Envelope/physiology , Nuclear Pore/physiology , Nuclear Pore/ultrastructure , Active Transport, Cell Nucleus , Biomechanical Phenomena , Cryoelectron Microscopy , Cytoplasm/metabolism , Energy Metabolism , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Models, Biological , Nuclear Envelope/ultrastructure , Nuclear Pore Complex Proteins/chemistry , Osmotic Pressure , Schizosaccharomyces/growth & development , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/chemistry , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...