Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 927: 175054, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35636524

ABSTRACT

PI3Kδ plays a critical role in adaptive immune cell activation and function. Suppression of PI3Kδ has been shown to counter excessive triggering of immune responses which has led to delineating the role of this isoform in the pathophysiology of autoimmune disorders. In the current study, we have described preclinical characterization of PI3Kδ specific inhibitor LL-00071210 in various rheumatoid arthritis models. LL-00071210 displayed excellent in vitro potency in biochemical and cellular assay against PI3Kδ with IC50 values of 24.6 nM and 9.4 nM, respectively. LL-00071210 showed higher selectivity over PI3Kγ and PI3Kß as compared to available PI3K inhibitors. LL-00071210 had good stability in liver microsomes and plasma across species and showed low clearance, low-to-moderate Vss, with bioavailability of >50% in preclinical species. LL-00071210 demonstrated excellent in vivo efficacy in adjuvant-induced and collagen-induced arthritis models. Co-administration of LL-00071210 and methotrexate at subtherapeutic dose regimen in collagen induced arthritis model led to additive effects, indicating the combination potential of LL-00071210 along with available disease modifying anti-rheumatic drugs (DMARD). In conclusion, we have described a specific PI3Kδ inhibitor with ∼100-fold selectivity over other PI3K isoforms. LL-00071210 has good drug-like properties and thus warrants testing in the clinic for the treatment of autoimmune diseases.


Subject(s)
Arthritis, Rheumatoid , Phosphatidylinositol 3-Kinases , Arthritis, Rheumatoid/drug therapy , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Structure-Activity Relationship
2.
J Med Chem ; 63(23): 14700-14723, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33297683

ABSTRACT

PI3Kδ inhibitors have been approved for B-cell malignancies like CLL, small lymphocytic lymphoma, and so forth. However, currently available PI3Kδ inhibitors are nonoptimal, showing weakness against at least one of the several important properties: potency, isoform selectivity, and/or pharmacokinetic profile. To come up with a PI3Kδ inhibitor that overcomes all these deficiencies, a pharmacophoric expansion strategy was employed. Herein, we describe a systematic transformation of a "three-blade propeller" shaped lead, 2,3-disubstituted quinolizinone 11, through a 1,2-disubstituted quinolizinone 20 to a novel "four-blade propeller" shaped 1,2,3-trisubstituted quinolizinone 34. Compound 34 has excellent potency, isoform selectivity, metabolic stability across species, and exhibited a favorable pharmacokinetic profile. Compound 34 also demonstrated a differentiated efficacy profile in human germinal center B and activated B cell-DLBCL cell lines and xenograft models. Compound 34 qualifies for further evaluation as a candidate for monotherapy or in combination with other targeted agents in DLBCLs and other forms of iNHL.


Subject(s)
Antineoplastic Agents/therapeutic use , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Hematologic Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Quinolizines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/chemical synthesis , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/pharmacokinetics , Dogs , Drug Discovery , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Molecular Docking Simulation , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Quinolizines/chemical synthesis , Quinolizines/metabolism , Quinolizines/pharmacokinetics , RAW 264.7 Cells , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...