Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e28296, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560133

ABSTRACT

The current study was designed to investigate the consequences of rice cooking and soaking of cooked rice (CR) with or without arsenic (As) contaminated water on As and Fe (iron) transfer to the human body along with associated health risk assessment using additive main-effects and multiplicative interaction (AMMI) and Monte Carlo Simulation model. In comparison to raw rice, As content in cooked rice (CR) and soaked cooked rice (SCR) enhanced significantly (at p < 0.05 level), regardless of rice cultivars and locations (at p < 0.05 level) due to the use of As-rich water for cooking and soaking purposes. Whereas As content in CR and SCR was reduced significantly due to the use of As-free water for cooking and soaking purposes. The use of As-free water (AFW) also enhanced the Fe content in CR. The overnight soaking of rice invariably enhanced the Fe content despite the use of As-contaminated water in SCR however, comparatively in lesser amount than As-free rice. In the studied area, due to consumption of As-rich CR and SCR children are more vulnerable to health hazards than adults. Consumption of SCR (prepared with AFW) could be an effective method to minimize As transmission and Fe enrichment among consumers.

2.
Ecotoxicol Environ Saf ; 270: 115832, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38141336

ABSTRACT

Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.


Subject(s)
Selenium , Trace Elements , Micronutrients/analysis , Soil , Agriculture , Crops, Agricultural
3.
Sci Total Environ ; 800: 149477, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34426348

ABSTRACT

Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Arsenic/toxicity , Food Contamination , Prospective Studies , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
4.
Chemphyschem ; 16(8): 1657-62, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25832779

ABSTRACT

In the present work, femtosecond transient absorption spectroscopy (fs-TAS) has been employed to investigate the electron injection efficiency (EIE) both from the singlet and triplet excited states of a well-known ruthenium dye (N719) to the conduction band (CB) of nanostructured TiO(2) in presence of three different organic solvents [γ-butylactone (GBL), 3-methoxypropionitrile (MPN), and dimethylformamide (DMF)] with different donor numbers (DNs) and dipole moments (DMs). The DM and DN of a solvent modulates the CB edge energy of TiO(2), and this effect reflects well in the fs-TAS results, which shows an EIE trend following the order GBL≥MPN≫DMF, that is, highest in GBL and lowest in DMF solvent environments. Fs-TAS results indicate a lower contribution of electron injection from both the singlet and triplet states in DMF, for which the dominant adsorption of DMF molecules on the TiO(2) surface seems to play an important role in the mechanism.


Subject(s)
Electrons , Organometallic Compounds/chemistry , Thiocyanates/chemistry , Titanium/chemistry , Molecular Structure , Organic Chemicals , Ruthenium/chemistry , Solvents/chemistry , X-Ray Absorption Spectroscopy
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 79(1): 197-205, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21420901

ABSTRACT

A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by (1)H NMR, (13)C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor.


Subject(s)
Naphthalenes/chemistry , Transition Elements/chemistry , Absorption , Acetonitriles/chemistry , Cations/chemistry , Molecular Conformation , Oxidation-Reduction , Solvents/chemistry , Spectrometry, Fluorescence , Time Factors
6.
J Comput Chem ; 32(1): 1-14, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20623648

ABSTRACT

The inequivalence of substitution pair positions of naphthalene ring has been investigated by a theoretical measurement of hydrogen bond strength, aromaticity, and excited state intramolecular proton transfer (ESIPT) reaction as the tools in three substituted naphthalene compounds viz 1-hydroxy-2-naphthaldehyde (HN12), 2-hydroxy-1-naphthaldehyde (HN21), and 2-hydroxy-3-naphthaldehyde (HN23). The difference in intramolecular hydrogen bond (IMHB) strength clearly reflects the inequivalence of substitution pairs where the calculated IMHB strength is found to be greater for HN12 and HN21 than HN23. The H-bonding interactions have been explored by calculation of electron density ρ(r) and Laplacian ∇(2) ρ(r) at the bond critical point using atoms in molecule method and by calculation of interaction between σ* of OH with lone pair of carbonyl oxygen atom using NBO analysis. The ground and excited state potential energy surfaces (PESs) for the proton transfer reaction at HF (6-31G**) and DFT (B3LYP/6-31G**) levels are similar for HN12, HN21 and different for HN23. The computed aromaticity of the two rings of naphthalene moiety at B3LYP/6-31G** method also predicts similarity between HN12 and HN21, but different for HN23.


Subject(s)
Computer Simulation , Naphthalenes/chemistry , Protons , Hydrogen Bonding , Models, Theoretical , Molecular Structure , Thermodynamics
7.
J Phys Chem A ; 114(7): 2618-27, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20121061

ABSTRACT

Study of intra- and intermolecular hydrogen-bonding interaction and excited state proton transfer reaction has been carried out in 4-hydroxyacridine (4-HA) and its hydrated clusters theoretically. Density functional theory [B3LYP/6-311++G(d,p)] has been exploited to calculate structural parameters and relative energies of different conformers of 4-HA and its hydrates. The substantial impact of solvent reaction field on hydrogen-bond energies, conformational equilibrium, and tautomerization reaction in aqueous medium have been realized by employing Onsager and PCM reaction field methods, and the stability of the conformers of 4-HA is found to be profusely modulated by the electrostatic influence of the solvent. A deeper insight into the nature of H-bonding in 4-HA and its hydrated clusters has been achieved under the provision of natural bond orbital and atoms in molecule analysis. Elucidation of potential energy curves for proton transfer reaction reveals that an intrinsic and two-water-molecule-assisted proton transfer (PT) reaction in 4-HA is hindered by high energy barrier in the S(1) surface, whereas single-water-assisted PT reaction is practically rendered barrierless. At the same time, the appreciably high barrier height of the ground state potential energy curve in all the cases unambiguously rules out the possibility of ground state proton transfer reaction.


Subject(s)
Acridines/chemistry , Computer Simulation , Models, Chemical , Protons , Water/chemistry , Hydrogen Bonding , Photochemistry , Quantum Theory , Static Electricity
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 72(5): 1103-11, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19230749

ABSTRACT

Interaction of charge transfer fluorophore N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) with globular proteins Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) brings forth a marked change in the position and intensity of band maxima both in case of absorption and fluorescence spectra. Spectroscopic approach has been elaborately implemented to explore the binding phenomena of the probe with HSA and BSA and it is found that the extent of binding of the probe to both serum albumins is similar in nature. Steady state fluorescence anisotropy values, fluorescence quenching study using acrylamide quencher and Red Edge Excitation Shift (REES) help in drawing reliable conclusions regarding the location of the probe molecule within the hydrophobic cavity of the proteins. An increase in fluorescence lifetime of the probe molecule solubilized in both the proteinous media also indicate that the probe is located at the motionally restricted environment inside the hydrophobic cavity of proteins and hence non-radiative channels are less operative than in the bulk water. Similarly, the variation of position and intensity of the emission maxima of DMANAN solubilized in micellar medium of Sodium Dodecyl Sulphate (SDS) also predicts well the critical micellar concentration (CMC) and polarity of micellar microenvironment.


Subject(s)
Electron Transport , Fluorescent Dyes/chemistry , Micelles , Nitriles/chemistry , Animals , Cattle , Humans , Molecular Structure , Naphthalenes/chemistry , Serum Albumin/chemistry
9.
Photochem Photobiol Sci ; 8(1): 101-10, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19247536

ABSTRACT

The charge transfer (CT) probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid (EDMANA) bound to Human Serum Albumin (HSA) serves as an efficient reporter of the polarity and conformational changes of protein in aqueous buffer (Tris-HCl buffer, pH=7.03) and in presence of denaturant, quencher and reverse micelles. The change in fluorescence intensity and the position of emission maxima of EDMANA in presence of HSA well reflect the nature of binding and location of the probe inside the proteinous environment. The increase in steady state anisotropy values with increase of protein concentration indicate restriction imposed on the mobility of the probe molecules in the proteinous medium. The results of fluorescence quenching of EDMANA by acrylamide, Fluorescence Resonance Energy Transfer (FRET) and Red Edge Excitation Shift (REES) studies throw light on the accessibility to the probe bound to HSA and hence indicate the probable location of the probe within the hydrophobic cavity of HSA. The complicated nature of protein unfolding in presence of urea is well studied by change in the fluorescence properties of EDMANA bound to HSA protein.


Subject(s)
1-Naphthylamine/analogs & derivatives , Acrylates/chemistry , Serum Albumin/chemistry , 1-Naphthylamine/chemistry , Esters , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Humans , Micelles
10.
J Fluoresc ; 19(2): 291-302, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18787934

ABSTRACT

We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.


Subject(s)
Fluorescent Dyes , Molecular Probe Techniques , Serum Albumin/chemistry , Acrylates , Fluorescence Polarization , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Protein Denaturation , Sodium Dodecyl Sulfate/chemistry , Urea
11.
J Photochem Photobiol B ; 91(1): 1-8, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18296059

ABSTRACT

In the present work, we have studied the interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde (HN12) with Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) by steady state absorption and emission spectroscopy combined with time resolved fluorescence measurements. The measured binding constant (K) and free energy change (DeltaG) indicate a stronger affinity of HN12 molecule for HSA than BSA. Steady state anisotropy, excitation anisotropy and fluorescence resonance energy transfer (FRET) studies indicate that the probe molecule resides at the hydrophobic site of the protein environment.


Subject(s)
Naphthalenes/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin/metabolism , Animals , Anisotropy , Cattle , Fluorescence Resonance Energy Transfer , Humans , Protein Binding , Protons
SELECTION OF CITATIONS
SEARCH DETAIL