Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Antibiot (Tokyo) ; 77(6): 365-381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38514856

ABSTRACT

Antimicrobial resistance has emerged as a covert global health crisis, posing a significant threat to humanity. If left unaddressed, it is poised to become the foremost cause of mortality worldwide. Among the multitude of resistant bacterial pathogens, Pseudomonas aeruginosa, a Gram-negative, facultative bacterium, has been responsible for mild to deadly infections. It is now enlisted as a global critical priority pathogen by WHO. Urgent measures are required to combat this formidable pathogen, necessitating the development of novel anti-pseudomonal drugs. To confront this pressing issue, we conducted an extensive screening of 3561 compounds from the ChemDiv library, resulting in the discovery of potent anti-pseudomonal quinazoline derivatives. Among the identified compounds, IDD-8E has emerged as a lead molecule, exhibiting exceptional efficacy against P. aeruginosa while displaying no cytotoxicity. Moreover, IDD-8E demonstrated significant pseudomonal killing, disruption of pseudomonal biofilm and other anti-bacterial properties comparable to a well-known antibiotic rifampicin. Additionally, IDD-8E's synergy with different antibiotics further strengthens its potential as a powerful anti-pseudomonal agent. IDD-8E also exhibited significant antimicrobial efficacy against other ESKAPE pathogens. Moreover, we elucidated the Structure-Activity-Relationship (SAR) of IDD-8E targeting the essential WaaP protein in P. aeruginosa. Altogether, our findings emphasize the promise of IDD-8E as a clinical candidate for novel anti-pseudomonal drugs, offering hope in the battle against antibiotic resistance and its devastating impact on global health.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Pseudomonas aeruginosa , Quinazolines , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Quinazolines/pharmacology , Quinazolines/chemistry , Structure-Activity Relationship
2.
RSC Adv ; 13(7): 4669-4677, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760308

ABSTRACT

The benign nature of aza-Michael addition reaction in aqueous solutions is demonstrated herein to conduct a direct glycoconjugation of amine-terminated poly(ether imine) (PETIM) dendrimers. Zero to three generations of dendrimers, possessing up to 16 amine functionalities at their peripheries, undergo aza-Michael reaction with unsaturated sugar vinyl sulfoxide in aq. MeOH solutions and afford the corresponding dendrimers modified with multiple glycosyl moieties at the periphery. First order kinetics of the glycoconjugation is monitored at varying temperatures and the rate constants are observed to be 60-508 s-1, for zero and first generation dendrimers. The antibacterial effects of amine-terminated dendrimers and the corresponding glycoconjugates are studied across Gram-positive, Gram-negative and acid-fast bacteria. Among the species, M. smegmatis and M. tuberculosis showed the greatest growth inhibition effect at micromolar concentrations, for the native amine-terminated and the corresponding glycoconjugated dendrimers. Quantitative assays are performed to adjudge the inhibition efficacies of dendrimers and the glycoconjugates. Selectivity to inhibit M. smegmatis and M. tuberculosis growth, and minimal effects on other bacterial species by dendrimers and glycoconjugates are emphasized.

3.
Protein Sci ; 32(3): e4568, 2023 03.
Article in English | MEDLINE | ID: mdl-36660887

ABSTRACT

Cyclic-di-nucleotide-based secondary messengers regulate various physiological functions, including stress responses in bacteria. Cyclic diadenosine monophosphate (c-di-AMP) has recently emerged as a crucial second messenger with implications in processes including osmoregulation, antibiotic resistance, biofilm formation, virulence, DNA repair, ion homeostasis, and sporulation, and has potential therapeutic applications. The contrasting activities of the enzymes diadenylate cyclase (DAC) and phosphodiesterase (PDE) determine the equilibrium levels of c-di-AMP. Although c-di-AMP is suspected of playing an essential role in the pathophysiology of bacterial infections and in regulating host-pathogen interactions, the mechanisms of its regulation remain relatively unexplored in mycobacteria. In this report, we biochemically and structurally characterize the c-di-AMP synthase (MsDisA) from Mycobacterium smegmatis. The enzyme activity is regulated by pH and substrate concentration; conditions of significance in the homoeostasis of c-di-AMP levels. Substrate binding stimulates conformational changes in the protein, and pApA and ppApA are synthetic intermediates detectable when enzyme efficiency is low. Unlike the orthologous Bacillus subtilis enzyme, MsDisA does not bind to, and its activity is not influenced in the presence of DNA. Furthermore, we have determined the cryo-EM structure of MsDisA, revealing asymmetry in its structure in contrast to the symmetric crystal structure of Thermotoga maritima DisA. We also demonstrate that the N-terminal minimal region alone is sufficient and essential for oligomerization and catalytic activity. Our data shed light on the regulation of mycobacterial DisA and possible future directions to pursue.


Subject(s)
Bacterial Proteins , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Bacterial Proteins/chemistry , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/metabolism , Bacillus subtilis/genetics
4.
Biochemistry ; 58(34): 3561-3565, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31398022

ABSTRACT

We describe a glycoconjugation strategy in which a sugar vinyl sulfoxide, acting as Michael donor, reacts efficiently with amine nucleophiles arising from the lysine side chain in peptides and proteins, at physiological pH and temperature. The method permits glycoconjugation of the lysine residues present in lysozyme with the sugar vinyl sulfoxide. The glycoconjugation of the protein abrogates the trypsin-mediated proteolysis at the lysine sites. The modified protein catalyzes digestion of the Gram-negative Escherichia coli cell wall and retains the same antimicrobial property as the native lysozyme.


Subject(s)
Glycoproteins/chemistry , Muramidase/chemistry , Glycoproteins/metabolism , Lysine , Muramidase/metabolism , Proteolysis , Sugars/chemistry
5.
Chembiochem ; 20(15): 1966-1976, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30951240

ABSTRACT

Lipomannan and lipoarabinomannan are integral components of the mycobacterial cell wall. Earlier studies demonstrated that synthetic arabinan and arabinomannan glycolipids acted as inhibitors of mycobacterial growth, in addition to exhibiting inhibitory activities of mycobacterial biofilm. Herein, it is demonstrated that synthetic mannan glycolipids are better inhibitors of mycobacterial growth, whereas lipoarabinomannan has a higher inhibition efficiency to biofilm. Syntheses of mannan glycolipids with a graded number of mannan moieties and an arabinomannan glycolipid are conducted by chemical methods and subsequent mycobacterial growth and biofilm inhibition studies are conducted on Mycobacterium smegmatis. Growth inhibition of (73±3) % is observed with a mannose trisaccharide containing a glycolipid, whereas this glycolipid did not promote biofilm inhibition activity better than that of arabinomannan glycolipid. The antibiotic supplementation activities of glycolipids on growth and biofilm inhibitions are evaluated. Increases in growth and biofilm inhibitions are observed if the antibiotic is supplemented with glycolipids, which leads to a significant reduction of inhibition concentrations of the antibiotic.


Subject(s)
Biofilms/drug effects , Glycolipids/pharmacology , Lipopolysaccharides/pharmacology , Mycobacterium smegmatis/drug effects , Biofilms/growth & development , Glycolipids/chemical synthesis , Glycolipids/chemistry , Lipopolysaccharides/chemical synthesis , Lipopolysaccharides/chemistry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium smegmatis/growth & development
6.
PLoS One ; 13(4): e0195416, 2018.
Article in English | MEDLINE | ID: mdl-29621342

ABSTRACT

RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.


Subject(s)
Bacterial Proteins/genetics , Carrier Proteins/genetics , Catalytic Domain/physiology , Sigma Factor/antagonists & inhibitors , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Amino Acid Sequence , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Base Sequence , Carrier Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Sequence Analysis, DNA
7.
Int J Biol Macromol ; 113: 1221-1232, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29545063

ABSTRACT

SarA, a winged-helix DNA binding protein, is a global virulence regulator in Staphylococcus aureus. The putative DNA binding region of SarA is located between amino acid residues Leu 53 and Gln 97. Previous studies have demonstrated that residues at positions 84, 88, 89, and 90 are critical for its function. To precisely understand the roles of the DNA binding residues, we have investigated nine mutants of a recombinant SarA (rSarA) along with the rSarA mutants carrying mutations at the above four positions. Of the thirteen mutants, eleven mutants show weaker DNA binding activity in vitro compared to rSarA. As noted earlier, the DNA binding affinity of rSarA was maximally affected due to the mutation at position 84 or 90. Each of the functionally-defective mutants also possesses an altered structure and stability. Additionally, the mutations at positions 84 and 90 have severely affected the formation of hydrogen (H) bonds at the interface between SarA and the cognate DNA. The mutation at position 64 also has perturbed the generation of some interface H-bonds. Therefore, the disruption of H-bonds in the protein-DNA interface and the structural alteration in the protein may be responsible for the reduced DNA binding activity of the mutants.


Subject(s)
Alanine , Amino Acid Substitution , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Mutation , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Trans-Activators/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Hydrogen Bonding , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Stability , Proteolysis , Staphylococcus aureus/genetics , Structure-Activity Relationship , Trans-Activators/chemistry , Trans-Activators/genetics , Virulence
8.
Protein J ; 37(2): 103-112, 2018 04.
Article in English | MEDLINE | ID: mdl-29464485

ABSTRACT

SarA, a pleiotropic transcription regulator, is encoded by Staphylococcus aureus, a pathogenic bacterium. The expression of many virulence and non-virulence genes in S. aureus is modulated by this regulator. Structural studies have shown it to be a winged-helix DNA-binding protein carrying two monomers. Each SarA monomer is composed of five α-helices (α1-α5), three ß-strands (ß1-ß3) and multiple loops. The putative DNA binding region of SarA is constituted with α3, α4, ß2, and ß3, whereas, its dimerization seems to occur using α1, α2, and α5. Interestingly, many SarA-like proteins are dimeric and use three or more helices for their dimerization. To clearly understand the roles of helix α1 in the dimerization, we have constructed and purified a SarA mutant (Δα1) that lacks helix α1. Our in-depth studies with Δα1 indicate that the helix α1 is critical for preserving the structure, DNA binding activity and thermodynamic stability of SarA. However, the helix has little affected its dimerization ability. Possible reasons for such anomaly have been discussed at length.


Subject(s)
Bacterial Proteins , Protein Conformation, alpha-Helical/genetics , Staphylococcus aureus , Virulence/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Dimerization , Sequence Deletion/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity
9.
Bioinformation ; 13(3): 78-85, 2017.
Article in English | MEDLINE | ID: mdl-28584448

ABSTRACT

Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future.

10.
PLoS One ; 11(3): e0151426, 2016.
Article in English | MEDLINE | ID: mdl-26989900

ABSTRACT

Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Octoxynol/chemistry , Surface-Active Agents/chemistry , Bacterial Proteins/genetics , Circular Dichroism , DNA/metabolism , Deoxyribonuclease I/chemistry , Deoxyribonuclease I/metabolism , Mutation , Octoxynol/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Staphylococcus aureus/pathogenicity , Surface-Active Agents/metabolism , Tryptophan/genetics
11.
PLoS One ; 10(3): e0122168, 2015.
Article in English | MEDLINE | ID: mdl-25822635

ABSTRACT

SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Unfolding , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Guanidine/pharmacology , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Multigene Family , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Temperature , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL