Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Adv Drug Deliv Rev ; 208: 115237, 2024 05.
Article in English | MEDLINE | ID: mdl-38447931

ABSTRACT

Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.


Subject(s)
Biomedical Research , Bioprinting , Animals , Humans , Bioprinting/methods , Imaging, Three-Dimensional , Reproducibility of Results , Organoids , Tissue Engineering/methods
2.
Adv Mater ; : e2304846, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252896

ABSTRACT

Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.

3.
Adv Sci (Weinh) ; 11(7): e2304332, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38032118

ABSTRACT

Microfluidic 3D cell culture devices that enable the recapitulation of key aspects of organ structures and functions in vivo represent a promising preclinical platform to improve translational success during drug discovery. Essential to these engineered devices is the spatial patterning of cells from different tissue types within a confined microenvironment. Traditional fabrication strategies lack the scalability, cost-effectiveness, and rapid prototyping capabilities required for industrial applications, especially for processes involving thermoplastic materials. Here, an approach to pattern fluid guides inside microchannels is introduced by establishing differential hydrophilicity using pressure-sensitive adhesives as masks and a subsequent selective coating with a biocompatible polymer. Optimal coating conditions are identified using polyvinylpyrrolidone, which resulted in rapid and consistent hydrogel flow in both the open-chip prototype and the fully bonded device containing additional features for medium perfusion. The suitability of the device for dynamic 3D cell culture is tested by growing human hepatocytes in the device under controlled fluid flow for a 14-day period. Additionally, the study demonstrated the potential of using the device for pharmaceutical high-throughput screening applications, such as predicting drug-induced liver injury. The approach offers a facile strategy of rapid prototyping thermoplastic microfluidic organ chips with varying geometries, microstructures, and substrate materials.


Subject(s)
Hepatocytes , Microfluidics , Humans , Microfluidics/methods , Cell Culture Techniques, Three Dimensional , Hydrogels
4.
Proc Natl Acad Sci U S A ; 120(7): e2206762120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745792

ABSTRACT

While there has been considerable success in the three-dimensional bioprinting of relatively large standalone filamentous tissues, the fabrication of solid fibers with ultrafine diameters or those cannular featuring ultrathin walls remains a particular challenge. Here, an enabling strategy for (bio)printing of solid and hollow fibers whose size ranges could be facilely adjusted across a broad spectrum, is reported, using an aqueous two-phase embedded (bio)printing approach combined with specially designed cross-linking and extrusion methods. The generation of standalone, alginate-free aqueous architectures using this aqueous two-phase strategy allowed freeform patterning of aqueous bioinks, such as those composed of gelatin methacryloyl, within the immiscible aqueous support bath of poly(ethylene oxide). Our (bio)printing strategy revealed the fabrication of standalone solid or cannular structures with diameters as small as approximately 3 or 40 µm, respectively, and wall thicknesses of hollow conduits down to as thin as <5 µm. With cellular functions also demonstrated, we anticipate the methodology to serve as a platform that may satisfy the needs for the different types of potential biomedical and other applications in the future, especially those pertaining to cannular tissues of ultrasmall diameters and ultrathin walls used toward regenerative medicine and tissue model engineering.


Subject(s)
Alginates , Bioprinting , Alginates/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Gelatin/chemistry , Bioprinting/methods , Printing, Three-Dimensional
5.
Nat Commun ; 14(1): 210, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639727

ABSTRACT

Volumetric additive manufacturing (VAM) enables fast photopolymerization of three-dimensional constructs by illuminating dynamically evolving light patterns in the entire build volume. However, the lack of bioinks suitable for VAM is a critical limitation. This study reports rapid volumetric (bio)printing of pristine, unmodified silk-based (silk sericin (SS) and silk fibroin (SF)) (bio)inks to form sophisticated shapes and architectures. Of interest, combined with post-fabrication processing, the (bio)printed SS constructs reveal properties including reversible as well as repeated shrinkage and expansion, or shape-memory; whereas the (bio)printed SF constructs exhibit tunable mechanical performances ranging from a few hundred Pa to hundreds of MPa. Both types of silk-based (bio)inks are cytocompatible. This work supplies expanded bioink libraries for VAM and provides a path forward for rapid volumetric manufacturing of silk constructs, towards broadened biomedical applications.


Subject(s)
Bioprinting , Fibroins , Silk , Ink , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds
6.
IEEE Trans Biomed Circuits Syst ; 16(6): 1057-1074, 2022 12.
Article in English | MEDLINE | ID: mdl-36417722

ABSTRACT

The article presents a fully integrated multimodal and multifunctional CMOS biosensing/actuating array chip and system for multi-dimensional cellular/tissue characterization. The CMOS chip supports up to 1,568 simultaneous parallel readout channels across 21,952 individually addressable multimodal pixels with 13 µm × 13 µm 2-D pixel pitch along with 1,568 Pt reference electrodes. These features allow the CMOS array chip to perform multimodal physiological measurements on living cell/tissue samples with both high throughput and single-cell resolution. Each pixel supports three sensing and one actuating modalities, each reconfigurable for different functionalities, in the form of full array (FA) or fast scan (FS) voltage recording schemes, bright/dim optical detection, 2-/4-point impedance sensing (ZS), and biphasic current stimulation (BCS) with adjustable stimulation area for single-cell or tissue-level stimulation. Each multi-modal pixel contains an 8.84 µm × 11 µm Pt electrode, 4.16 µm × 7.2 µm photodiode (PD), and in-pixel circuits for PD measurements and pixel selection. The chip is fabricated in a standard 130nm BiCMOS process as a proof of concept. The on-chip electrodes are constructed by unique design and in-house post-CMOS fabrication processes, including a critical Al shorting of all pixels during fabrication and Al etching after fabrication that ensures a high-yield planar electrode array on CMOS with high biocompatibility and long-term measurement reliability. For demonstration, extensive biological testing is performed with human and mouse progenitor cells, in which multidimensional biophysiological data are acquired for comprehensive cellular characterization.


Subject(s)
Biosensing Techniques , Mice , Animals , Humans , Reproducibility of Results , Electrodes , Semiconductors
7.
Sci Adv ; 8(43): eabq6900, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36288300

ABSTRACT

Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme-cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.


Subject(s)
Bioprinting , COVID-19 , Humans , Bioprinting/methods , Hydrogels , Gelatin , Microfluidics , Tissue Engineering/methods , Printing, Three-Dimensional , Alginates , Tissue Scaffolds
9.
Matter ; 5(2): 573-593, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35695821

ABSTRACT

One significant drawback of existing bioprinted tissues is their lack of shelf-availability caused by complications in both fabrication and storage. Here, we report a cryobioprinting strategy for simultaneously fabricating and storing cell-laden volumetric tissue constructs through seamlessly combining extrusion bioprinting and cryopreservation. The cryobioprinting performance was investigated by designing, fabricating, and storing cell-laden constructs made of our optimized cryoprotective gelatin-based bioinks using a freezing plate with precisely controllable temperature. The in situ freezing process further promoted the printability of cell-laden hydrogel bioinks to achieve freeform structures otherwise inconvenient with direct extrusion bioprinting. The effects of bioink composition on printability and cell viability were evaluated. The functionality of the method was finally investigated using cell differentiation and chick ex ovo assays. The results confirmed the feasibility and efficacy of cryobioprinting as a single-step method for concurrent tissue biofabrication and storage.

10.
Adv Mater Technol ; 7(5)2022 May.
Article in English | MEDLINE | ID: mdl-35754760

ABSTRACT

The design and manufacture of an origami-based liver-on-a-chip device are presented, together with demonstrations of the chip's effectiveness at recapitulating some of the liver's key in vivo architecture, physical microenvironment, and functions. Laser-cut layers of polyimide tape are folded together with polycarbonate nanoporous membranes to create a stack of three adjacent flow chambers separated by the membranes. Endothelial cells are seeded in the upper and lower flow chambers to simulate sinusoids, and hepatocytes are seeded in the middle flow chamber. Nutrients and metabolites flow through the simulated sinusoids and diffuse between the vascular pathways and the hepatocyte layers, mimicking physiological microcirculation. Studies of cell viability, metabolic functions, and hepatotoxicity of pharmaceutical compounds show that the endothelialized liver-on-a-chip model is conducive to maintaining hepatocyte functions and evaluation of the hepatotoxicity of drugs. Our unique origami approach speeds chip development and optimization, effectively simplifying the laboratory-scale fabrication of on-chip models of human tissues without necessarily reducing their structural and functional sophistication.

11.
Adv Healthc Mater ; 11(9): e2102411, 2022 05.
Article in English | MEDLINE | ID: mdl-34860472

ABSTRACT

The 3D bioprinting technologies have attracted increasing attention due to their flexibility in producing architecturally relevant tissue constructs. Here, a vertical embedded extrusion bioprinting strategy using uniaxial or coaxial nozzles is presented, which allows formation of vertical structures of homogeneous or heterogeneous properties. By adjusting the bioprinting parameters, the characteristics of the bioprinted vertical patterns can be precisely controlled. Using this strategy, two proof-of-concept applications in tissue biofabrication are demonstrated. Specifically, intestinal villi and hair follicles, two liner-shaped tissues in the human body, are successfully generated with the vertical embedded bioprinting method, reconstructing some of their key structures as well as restoring partial functions in vitro. Caco-2 cells in the bioprinted intestinal villus constructs proliferated and aggregated properly, also showing functional biomarker expressions such as ZO-1 and villin. Moreover, preliminary hair follicle structures featuring keratinized human keratinocytes and spheroid-shaped human dermal papilla cells are formed after vertical bioprinting and culturing. In summary, this vertical embedded extrusion bioprinting technique harnessing a uniaxial or coaxial format will likely bring further improvements in the reconstruction of certain human tissues and organs, especially those with a linear structure, potentially leading to wide utilities in tissue engineering, tissue model engineering, and drug discovery.


Subject(s)
Bioprinting , Bioprinting/methods , Caco-2 Cells , Humans , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
12.
Adv Healthc Mater ; 11(7): e2100884, 2022 04.
Article in English | MEDLINE | ID: mdl-34558232

ABSTRACT

Multiple myeloma (MM) is a malignancy of plasma cells accounting for ≈12% of hematological malignancies. In this study, the fabrication of a high-content in vitro MM model using a coaxial extrusion bioprinting method is reported, allowing formation of a human bone marrow-like microenvironment featuring an outer mineral-containing sheath and the inner soft hydrogel-based core. MM cells are mono-cultured or co-cultured with HS5 stromal cells that can release interleukin-6 (IL-6), where the cells show superior behaviors and responses to bortezomib in 3D models than in the planar cultures. Tocilizumab, a recombinant humanized anti-IL-6 receptor (IL-6R), is investigated for its efficacy to enhance the chemosensitivity of bortezomib on MM cells cultured in the 3D model by inhibiting IL-6R. More excitingly, in a proof-of-concept demonstration, it is revealed that patient-derived MM cells can be maintained in 3D-bioprinted microenvironment with decent viability for up to 7 days evaluated, whereas they completely die off in planar culture as soon as 5 days. In conclusion, a 3D-bioprinted MM model is fabricated to emulate some characteristics of the human bone marrow to promote growth and proliferation of the encapsulated MM cells, providing new insights for MM modeling, drug development, and personalized therapy in the future.


Subject(s)
Bioprinting , Multiple Myeloma , Bioprinting/methods , Bortezomib/pharmacology , Bortezomib/therapeutic use , Coculture Techniques , Humans , Hydrogels/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Printing, Three-Dimensional , Tissue Engineering/methods , Tumor Microenvironment
13.
Biomaterials ; 280: 121302, 2022 01.
Article in English | MEDLINE | ID: mdl-34894584

ABSTRACT

Monotherapy with a single chemotherapeutic regimen has met with significant hurdles in terms of clinical efficacy. The complexity of cancer accentuates the need for an alternative approach with a combination of two or more therapeutic regimens to win the battle. However, it is still a challenge to develop a successful combination of drugs with high efficiency and low toxicity to control cancer growth. While gemcitabine monotherapy remains a choice of standard treatment for advanced breast cancer, the approach has not prolonged the median survival time of metastatic breast cancer patients. Here, we report a hyaluronic acid (HA)-based drug combination of gemcitabine (GEM) with imiquimod (IMQ) to stimulate immune cells for anticancer activity. Treatment of the drug combination (IMQ-HA-GEM) showed enhanced anticancer activity against 4T1 breast tumor cells in vitro. Our study with a microfluidics-based 3D, compartmentalized cancer model showed that infiltration of THP-1 monocytes occurred particularly at the site of cancer cells treated with IMQ-HA-GEM. Moreover, IMQ-HA-GEM significantly suppressed the volume of 4T1 breast tumor of mice in vivo. Flow cytometry study displayed a significantly higher activation of CD11b+ immune cells in the blood of mice treated with IMQ-HA-GEM, whereas immunohistochemistry study revealed greater prevalence of CD68+ tumor-associated macrophages in the tumor. Histological examination of isolated tumors of mice treated with IMQ-HA-GEM further confirmed the efficacy of drug combination on cancer cells. This study supports the conclusion that imiquimod potentiates the effect of gemcitabine by activating immune cells to suppress tumors in the form of combination nanoparticles.


Subject(s)
Breast Neoplasms , Nanoparticles , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Female , Humans , Imiquimod/therapeutic use , Mice , Gemcitabine
14.
Methods Mol Biol ; 2375: 61-75, 2022.
Article in English | MEDLINE | ID: mdl-34591299

ABSTRACT

Three-dimensional bioprinting represents promising approach for fabricating standalone and perfusable vascular conduits using biocompatible materials. Here we describe a step-by-step method by using a multichannel coaxial extrusion system (MCCES) and a blend bioink constituting gelatin methacryloyl, sodium alginate, and eight-arm poly(ethylene glycol)-acrylate with a tripentaerythritol core for the fabrication of standalone circumferentially multilayered hollow tubes. This microfluidic bioprinting method allows the fabrication of perfusable vascular conduits with a core lumen, an inner endothelial layer resembling the tunica intima, and an outer smooth muscle cell layer resembling the tunica media of the blood vessel. Biocompatible and perfusable blood vessels with a widely tunable size range in terms of luminal diameters and wall thicknesses can be successfully fabricated using the MCCES.


Subject(s)
Bioprinting , Gelatin , Methacrylates , Microfluidics , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
15.
Biomolecules ; 11(6)2021 05 23.
Article in English | MEDLINE | ID: mdl-34071060

ABSTRACT

COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 12 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 160 million (>20% located in United States) and killed more than 3.3 million people around the world (>20% deaths in USA). As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors-S/Ace2, Tmprss2, Cathepsins L and K, and Mpro-to prevent binding, membrane fusion and replication of the virus, respectively. All together, we generated an ensemble of structural conformations that increase high-quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high-value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Drug Discovery , Drug Repositioning , Humans , Machine Learning , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism , Virus Replication/drug effects
16.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941687

ABSTRACT

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Subject(s)
Lab-On-A-Chip Devices , Models, Biological , Pulmonary Alveoli/physiology , Alveolar Epithelial Cells , Antiviral Agents/pharmacology , Cigarette Smoking/adverse effects , Dimethylpolysiloxanes/chemistry , Gelatin/chemistry , Humans , Hydrogels/chemistry , Methacrylates/chemistry , Porosity , Pulmonary Alveoli/cytology , Pulmonary Alveoli/pathology , Respiration , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
17.
Matter ; 4(1): 217-240, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33718864

ABSTRACT

In this study, we present the photosynthetic oxygen (O2) supply to mammalian cells within a volumetric extracellular matrix-like construct, whereby a three-dimensional (3D)-bioprinted fugitive pattern encapsulating unicellular green algae, Chlamydomonas reinhardtii (C. reinhardtii), served as a natural photosynthetic O2-generator. The presence of bioprinted C. reinhardtii enhanced the viability and functionality of mammalian cells while reducing the hypoxic conditions within the tissues. We were able to subsequently endothelialize the hollow perfusable microchannels formed after enzymatic removal of the bioprinted C. reinhardtii-laden patterns from the matrices following the initial oxygenation period, to obtain biologically relevant vascularized mammalian tissue constructs. The feasibility of co-culture of C. reinhardtii with human cells, the printability and the enzymatic degradability of the fugitive bioink, as well as the exploration of C. reinhardtii as a natural, eco-friendly, cost-effective, and sustainable source of O2 would likely promote the development of engineered tissues, tissue models, and food for various applications.

18.
Sci Rep ; 11(1): 2800, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531664

ABSTRACT

Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.


Subject(s)
Adenocarcinoma of Lung/secondary , Hemorheology , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , Side-Population Cells/pathology , A549 Cells , Adenocarcinoma of Lung/blood supply , Animals , Cell Movement , Cell Survival , Computer Simulation , Epithelial-Mesenchymal Transition , Female , Humans , Lung/blood supply , Lung/pathology , Lung Neoplasms/blood supply , Microfluidic Analytical Techniques , Rats , Stress, Mechanical , Tumor Microenvironment , Xenograft Model Antitumor Assays
19.
Commun Biol ; 4(1): 233, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608611

ABSTRACT

The engineering of multifunctional surgical bactericidal nanofibers with inherent suitable mechanical and biological properties, through facile and cheap fabrication technology, is a great challenge. Moreover, hernia, which is when organ is pushed through an opening in the muscle or adjacent tissue due to damage of tissue structure or function, is a dire clinical challenge that currently needs surgery for recovery. Nevertheless, post-surgical hernia complications, like infection, fibrosis, tissue adhesions, scaffold rejection, inflammation, and recurrence still remain important clinical problems. Herein, through an integrated electrospinning, plasma treatment and direct surface modification strategy, multifunctional bactericidal nanofibers were engineered showing optimal properties for hernia repair. The nanofibers displayed good bactericidal activity, low inflammatory response, good biodegradation, as well as optimal collagen-, stress fiber- and blood vessel formation and associated tissue ingrowth in vivo. The disclosed engineering strategy serves as a prominent platform for the design of other multifunctional materials for various biomedical challenges.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials , Gelatin/pharmacology , Hernia, Abdominal/surgery , Herniorrhaphy/instrumentation , Methacrylates/pharmacology , Nanofibers , Polyesters/pharmacology , Surgical Wound Infection/prevention & control , Tissue Scaffolds , Animals , Anti-Bacterial Agents/chemistry , Disease Models, Animal , Gelatin/chemistry , Hernia, Abdominal/pathology , Methacrylates/chemistry , Mice , NIH 3T3 Cells , Nanomedicine , Polyesters/chemistry , Rats , Surgical Wound Infection/microbiology , Wound Healing/drug effects
20.
RSC Adv ; 11(60): 38126-38145, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498070

ABSTRACT

Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...