Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9041, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641589

ABSTRACT

Monitoring methane emissions is crucial in mitigating climate change as it has a relatively short atmospheric lifetime of about 12 years and a significant radiative forcing impact. To measure the impact of methane-controlling policies and techniques, a deep understanding of methane emissions is of great importance. Remote sensing offers scalable approaches for monitoring methane emissions at various scales, from point-source high-resolution monitoring to regional and global estimates. The TROPOMI satellite instrument provides daily XCH4 data globally, offering the opportunity to monitor methane at a moderate spatial resolution with an acceptable level of sensitivity. To infer emissions from TROPOMI data, we used the prior emission estimates from global and national inventories and the GEOS-Chem chemical transport model to simulate atmospheric methane along with actual observations of TROPOMI. In this study, methane emissions from Toronto, Montreal, New York, Los Angeles, Houston, and Mexico City have been estimated using the analytical solution of Bayesian inversion using the cloud-based Integrated Methane Inversion (IMI) framework. Using the result from ensemble inversions, and city boundaries, the average total emissions were as follows: Toronto 230.52 Gg a-1, Montreal 111.54 Gg a-1, New York 144.38 Gg a-1, Los Angeles 207.03 Gg a-1, Houston 650.16 Gg a-1, and Mexico City 280.81 Gg a-1. The resulting gridded scale factors ranged from 0.22 to 6.2, implying methane prior emission underestimations in most of these cities. As such, this study underscores the key role of remote sensing in accurately assessing urban methane emissions, informing essential climate mitigation efforts.

2.
Sensors (Basel) ; 24(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475187

ABSTRACT

Wetlands are amongst Earth's most dynamic and complex ecological resources, serving productive and biodiverse ecosystems. Enhancing the quality of wetland mapping through Earth observation (EO) data is essential for improving effective management and conservation practices. However, the achievement of reliable and accurate wetland mapping faces challenges due to the heterogeneous and fragmented landscape of wetlands, along with spectral similarities among different wetland classes. The present study aims to produce advanced 10 m spatial resolution wetland classification maps for four pilot sites on the Island of Newfoundland in Canada. Employing a comprehensive and multidisciplinary approach, this research leverages the synergistic use of optical, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) data. It focuses on ecological and hydrological interpretation using multi-source and multi-sensor EO data to evaluate their effectiveness in identifying wetland classes. The diverse data sources include Sentinel-1 and -2 satellite imagery, Global Ecosystem Dynamics Investigation (GEDI) LiDAR footprints, the Multi-Error-Removed Improved-Terrain (MERIT) Hydro dataset, and the European ReAnalysis (ERA5) dataset. Elevation data and topographical derivatives, such as slope and aspect, were also included in the analysis. The study evaluates the added value of incorporating these new data sources into wetland mapping. Using the Google Earth Engine (GEE) platform and the Random Forest (RF) model, two main objectives are pursued: (1) integrating the GEDI LiDAR footprint heights with multi-source datasets to generate a 10 m vegetation canopy height (VCH) map and (2) seeking to enhance wetland mapping by utilizing the VCH map as an input predictor. Results highlight the significant role of the VCH variable derived from GEDI samples in enhancing wetland classification accuracy, as it provides a vertical profile of vegetation. Accordingly, VCH reached the highest accuracy with a coefficient of determination (R2) of 0.69, a root-mean-square error (RMSE) of 1.51 m, and a mean absolute error (MAE) of 1.26 m. Leveraging VCH in the classification procedure improved the accuracy, with a maximum overall accuracy of 93.45%, a kappa coefficient of 0.92, and an F1 score of 0.88. This study underscores the importance of multi-source and multi-sensor approaches incorporating diverse EO data to address various factors for effective wetland mapping. The results are expected to benefit future wetland mapping studies.

3.
Environ Monit Assess ; 195(5): 558, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37046022

ABSTRACT

Detailed wetland inventories and information about the spatial arrangement and the extent of wetland types across the Earth's surface are crucially important for resource assessment and sustainable management. In addition, it is crucial to update these inventories due to the highly dynamic characteristics of the wetlands. Remote sensing technologies capturing high-resolution and multi-temporal views of landscapes are incredibly beneficial in wetland mapping compared to traditional methods. Taking advantage of the Google Earth Engine's computational power and multi-source earth observation data from Sentinel-1 multi-spectral sensor and Sentinel-2 radar, we generated a 10 m nationwide wetlands inventory map for Iran. The whole country is mapped using an object-based image processing framework, containing SNIC superpixel segmentation and a Random Forest classifier that was performed for four different ecological zones of Iran separately. Reference data was provided by different sources and through both field and office-based methods. Almost 70% of this data was used for the training stage and the other 30% for evaluation. The whole map overall accuracy was 96.39% and the producer's accuracy for wetland classes ranged from nearly 65 to 99%. It is estimated that 22,384 km2 of Iran are covered with water bodies and wetland classes, and emergent and shrub-dominated are the most common wetland classes in Iran. Considering the water crisis that has been started in Iran, the resulting ever-demanding map of Iranian wetland sites offers remarkable information about wetland boundaries and spatial distribution of wetland species, and therefore it is helpful for both governmental and commercial sectors.


Subject(s)
Cloud Computing , Wetlands , Iran , Search Engine , Environmental Monitoring/methods
4.
J Environ Manage ; 280: 111676, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33246750

ABSTRACT

Thanks to increasing urban development, it has become important for municipalities to understand how ecological processes function. In particular, urban wetlands are vital habitats for the people and the animals living amongst them. This is because wetlands provide great services, including water filtration, flood and drought mitigation, and recreational spaces. As such, several recent urban development plans are currently needed to monitor these invaluable ecosystems using time- and cost-efficient approaches. Accordingly, this study is designed to provide an initial response to the need of wetland mapping in the City of St. John's, Newfoundland and Labrador (NL), Canada. Specifically, we produce the first high-resolution wetland map of the City of St. John's using advanced machine learning algorithms, very high-resolution satellite imagery, and airborne LiDAR. An object-based random forest algorithm is applied to features extracted from WorldView-4, GeoEye-1, and LiDAR data to characterize five wetland classes, namely bog, fen, marsh, swamp, and open water, within an urban area. An overall accuracy of 91.12% is obtained for discriminating different wetland types and wetland surface water flow connectivity is also produced using LiDAR data. The resulting wetland classification map and the water surface flow map can help elucidate a greater understanding of the way in which wetlands are connected to the city's landscape and ultimately aid to improve wetland-related conservation and management decisions within the City of St. John's.


Subject(s)
Satellite Imagery , Wetlands , Canada , Cities , Ecosystem , Humans , Newfoundland and Labrador
SELECTION OF CITATIONS
SEARCH DETAIL
...