Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Tissue Cell ; 90: 102527, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181089

ABSTRACT

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.

3.
Cancer Rep (Hoboken) ; 7(8): e2152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118438

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) represents a primary liver tumor characterized by a bleak prognosis and elevated mortality rates, yet its precise molecular mechanisms have not been fully elucidated. This study uses advanced bioinformatics techniques to discern differentially expressed genes (DEGs) implicated in the pathogenesis of HCC. The primary objective is to discover novel biomarkers and potential therapeutic targets that can contribute to the advancement of HCC research. METHODS: The bioinformatics analysis in this study primarily utilized the Gene Expression Omnibus (GEO) database as data source. Initially, the Transcriptome analysis console (TAC) screened for DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network of the proteins associated to the identified DEGs with the STRING database. We obtained our hub genes using Cytoscape and confirmed the results through the GEPIA database. Furthermore, we assessed the prognostic significance of the identified hub genes using the GEPIA database. To explore the regulatory interactions, a miRNA-gene interaction network was also constructed, incorporating information from the miRDB database. For predicting the impact of gene overexpression on drug effects, we utilized CANCER DP. RESULTS: A comprehensive analysis of HCC gene expression profiles revealed a total of 4716 DEGs, consisting of 2430 upregulated genes and 2313 downregulated genes in HCC sample compared to healthy control group. These DEGs exhibited significant enrichment in key pathways such as the PI3K-Akt signaling pathway, nuclear receptors meta-pathway, and various metabolism-related pathways. Further exploration of the PPI network unveiled the P53 signaling pathway and pyrimidine metabolism as the most prominent pathways. We identified 10 hub genes (ASPM, RRM2, CCNB1, KIF14, MKI67, SHCBP1, CENPF, ANLN, HMMR, and EZH2) that exhibited significant upregulation in HCC samples compared to healthy control group. Survival analysis indicated that elevated expression levels of these genes were strongly associated with changes in overall survival in HCC patients. Lastly, we identified specific miRNAs that were found to influence the expression of these genes, providing valuable insights into potential regulatory mechanisms underlying HCC progression. CONCLUSION: The findings of this study have successfully identified pivotal genes and pathways implicated in the pathogenesis of HCC. These novel discoveries have the potential to significantly enhance our understanding of HCC at the molecular level, opening new ways for the development of targeted therapies and improved prognosis evaluation.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Liver Neoplasms , Protein Interaction Maps , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , MicroRNAs/genetics , Transcriptome , Databases, Genetic , Signal Transduction/genetics
4.
Sci Rep ; 14(1): 16941, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043763

ABSTRACT

The nonspecific nature of cancer drug delivery often results in substantial toxic side effects during treatments for breast cancer. To mitigate these negative outcomes, our approach involves loading methotrexate (MTX) within carbon quantum dots (CQDs) synthesized from folic acid, which are then enveloped in exosomal membranes obtained from breast cancer cells (Ex@MTX-CQDs). Analysis utilizing nanoparticle tracking techniques has demonstrated that these Ex@MTX-CQDs maintain the physical and biochemical properties of their exosomal precursors. The release profile of MTX indicated a restricted release percentage (less than 10%) under normal physiological conditions, which is contrasted by a more consistent release rate (approximately 65%) when emulating the conditions found within tumor tissues. The toxicological assessments have confirmed that the presence of exosomes combined with leftover folic acid significantly improves the delivery efficacy of MTX directly to the cancerous cells through the binding to folate and heparan sulfate proteoglycan receptors. This process results in increased disruption of the mitochondrial membrane potential and subsequently triggers apoptosis, ultimately leading to the destruction of cancerous cells. Our research could potentially contribute to the further innovation and application of nanocarriers derived from biological sources for the targeted treatment of breast cancer.


Subject(s)
Breast Neoplasms , Carbon , Exosomes , Folic Acid , Methotrexate , Quantum Dots , Humans , Folic Acid/chemistry , Quantum Dots/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Exosomes/metabolism , Female , Methotrexate/pharmacology , Methotrexate/administration & dosage , Methotrexate/chemistry , Carbon/chemistry , Drug Carriers/chemistry , Cell Line, Tumor , Drug Delivery Systems , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Ultrasonic Waves , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects
5.
Int J Fertil Steril ; 18(Suppl 1): 60-70, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39033372

ABSTRACT

BACKGROUND: In this phase I clinical trial, our primary objective was to develop an innovative therapeutic approach utilizing autologous bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs) for the treatment of nonobstructive azoospermia (NOA). Additionally, we aimed to assess the feasibility and safety of this approach. MATERIALS AND METHODS: We recruited 80 participants in this non-randomized, open-label clinical trial, including patients undergoing NOA treatment using autologous BM-MSCs (n=40) and those receiving hormone therapy as a control group (n=40). Detailed participant characteristics, such as age, baseline hormonal profiles, etiology of NOA, and medical history, were thoroughly documented. Autotransplantation of BM-MSCs into the testicular network was achieved using microsurgical testicular sperm extraction (microTESE). Semen analysis and hormonal assessments were performed both before and six months after treatment. Additionally, we conducted an in-silico analysis to explore potential protein-protein interactions between exosomes secreted from BM-MSCs and receptors present in human seminiferous tubule cells. RESULTS: Our results revealed significant improvements following treatment, including increased testosterone and inhibin B levels, elevated sperm concentration, and reduced levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Notably, in nine patients (22.5%) previously diagnosed with secondary infertility and exhibiting azoospermia before treatment, the proposed approach yielded successful outcomes, as indicated by hormonal profile changes over six months. Importantly, these improvements were achieved without complications. Additionally, our in-silico analysis identified potential binding interactions between the protein content of BM-MSC-derived exosomes and receptors integral to spermatogenesis. CONCLUSION: Autotransplantation of BM-MSCs into the testicular network using microTESE in NOA patients led to the regeneration of seminiferous tubules and the regulation of hormonal profiles governing spermatogenesis. Our findings support the safety and effectiveness of autologous BM-MSCs as a promising treatment modality for NOA, with a particular focus on the achieved outcomes in patients with secondary infertility (registration number: IRCT20190519043634N1).

6.
Stem Cell Res Ther ; 15(1): 189, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956646

ABSTRACT

BACKGROUND: Recent studies have proved the role of autophagy in mesenchymal stem cell (MSCs) function and regenerative properties. How and by which mechanism autophagy modulation can affect the juxtacrine interaction of MSCs should be addressed. Here, the role of autophagy was investigated in the formation of tunneling nanotubes (TNTs) and homotypic mitochondrial donation. METHODS: MSCs were incubated with 15 µM Metformin (Met) and/or 3 µM 3-methyladenine (3-MA) for 48 h. The formation of TNTs was assessed using bright-field and SEM images. The mitochondria density and ΔΨ values were monitored using flow cytometry analysis. Using RT-PCR and protein array, the close interaction and shared mediators between autophagy, apoptosis, and Wnt signaling pathways were also monitored. The total fatty acid profile was assessed using gas chromatography. RESULT: Data indicated the increase of TNT length and number, along with other cell projections after the induction of autophagy while these features were blunted in 3-MA-treated MSCs (p < 0.05). Western blotting revealed the significant reduction of Rab8 and p-FAK in 3-MA-treated MSCs (p < 0.05), indicating the inhibition of TNT assembly and vesicle transport. Likewise, the stimulation of autophagy increased autophagic flux and mitochondrial membrane integrity compared to 3-MA-treated MSCs. Despite these findings, protein levels of mitochondrial membrane Miro1 and 2 were unchanged after autophagy inhibition/stimulation (p > 0.05). We found that the inhibition/stimulation of autophagy can affect the protein, and transcription levels of several mediators related to Wnt and apoptosis signaling pathways involved in different cell bioactivities. Data confirmed the profound increase of mono and polyunsaturated/saturated fatty acid ratio in MSCs exposed to autophagy stimulator. CONCLUSIONS: In summary, autophagy modulation could affect TNT formation which is required for homotypic mitochondrial donation. Thus, the modulation of autophagy creates a promising perspective to increase the efficiency of cell-based therapies.


Subject(s)
Autophagy , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Adenine/pharmacology , Adenine/analogs & derivatives , Humans , Nanotubes/chemistry , Apoptosis/drug effects , Animals , Metformin/pharmacology , Cells, Cultured , Wnt Signaling Pathway/drug effects , Cell Membrane Structures
7.
Nat Prod Res ; : 1-8, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824422

ABSTRACT

Regenerative effects of sea anemone-derived exosomes on human foreskin fibroblasts (HFFs) were investigated. Water-based extracts from regenerating Aulactinia stella tissue were collected at various time points, and exosomes were extracted after inducing wounds. Both the extract and exosomes were tested on HFF for proliferation and in vitro wound healing. In silico analysis explored protein-protein docking between regenerative exosome proteins and HFF receptors. The MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide proliferation assay and in vitro wound healing test of aquatic extract showed proliferative effects on HFF cell lines, with the 60 µg/mL concentration significantly enhancing cell migration. Exosomes were characterised. Exosomes showed a significantly positive effect on cell proliferation and migration at the 50 µg/mL concentration 48 h post-wound induction. In silico analysis revealed potential binding affinities between exosome proteins and HFF receptors. In conclusion, optimised concentrations of A. stella-derived exosomes exhibited positive effects on HFF regeneration and migration, suggesting their potential in accelerating wound healing.

8.
J Histotechnol ; : 1-17, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752929

ABSTRACT

FACT is a developed technique for clearing tissues that does not use acrylamide. Since the removal of lipids is crucial for transparency and efficient antibody staining throughout the tissue, especially for microscopy and imaging, it is a harmful process that can cause the loss of important biological molecules such as proteins. The FACT technique overcomes this by chemically bonding the membrane and intracellular proteins with the extracellular matrix, creating a massive 3D hydrogel matrix and providing structural support to fortify the tissue during processing. Compared to other acrylamide-based techniques, the FACT technique requires less labor and harmful chemicals and is therefore considered a more suitable option. In this study, we describe the complete FACT protocol for antibody staining and imaging of whole-cleared tissues while preserving structure and improving image quality. The protocol includes tissue perfusion, fixation, clearing, antibody staining, refractive index matching (RIM) (), microscopy, and imaging. The timing for each step varies depending on the size, weight, and type of tissue, as well as the type of immunostaining. We provide an example of the FACT protocol using mouse brain tissue, which demonstrates its suitability for molecular interrogation analysis of large tissues. The FACT technique has been successfully performed on different types of tissues, making it a favorable choice for a variety of applications.

9.
Curr Pharm Des ; 30(20): 1578-1598, 2024.
Article in English | MEDLINE | ID: mdl-38676525

ABSTRACT

BACKGROUND: Ischemia-reperfusion Injury (IRI) is a complex pathophysiological process with severe consequences, including irreversible loss of renal function. Various intraoperative prevention methods have been proposed to mitigate the harmful effects of warm ischemia and kidney reperfusion. AIM: This comprehensive analysis provides an overview of pharmacological agents and intraoperative methods for preventing and treating renal IRI. METHODS: Our analysis revealed that eplerenone exhibited the highest binding affinity to crucial targets, including Aldehyde Dehydrogenase (AD), Estrogen Receptor (ER), Klotho protein, Mineralocorticoid Receptor (MR), and Toll-like Receptor 4 (TLR4). This finding indicates eplerenone's potential as a potent preventive agent against IRI, surpassing other available therapeutics like Benzodioxole, Hydrocortisone, Indoles, Nicotinamide adenine dinucleotide, and Niacinamide. In preventing kidney IRI, our comprehensive analysis emphasizes the significance of eplerenone due to its strong binding affinity to key targets involved in the pathogenesis of IRI. RESULTS: This finding positions eplerenone as a promising candidate for further clinical investigation and consideration for future clinical practice. CONCLUSION: The insights provided in this analysis will assist clinicians and researchers in selecting effective preventive approaches for renal IRI in surgical settings, potentially improving patient outcomes.


Subject(s)
Reperfusion Injury , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Humans , Animals , Computer Simulation , Kidney/drug effects , Kidney/metabolism
10.
Cell Commun Signal ; 22(1): 80, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291458

ABSTRACT

Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Signal Transduction , Extracellular Matrix
11.
Adv Biol (Weinh) ; 8(2): e2300258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955866

ABSTRACT

Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.


Subject(s)
Exosomes , Extracellular Vesicles , Humans , Female , Male , Precision Medicine , Genitalia , Reproduction
12.
Bioimpacts ; 13(6): 495-504, 2023.
Article in English | MEDLINE | ID: mdl-38022384

ABSTRACT

Introduction: Premature ovarian insufficiency (POI) is a challenging issue in terms of reproduction biology. In this study, therapeutic properties of bone marrow CD146+ mesenchymal stem cells (MSCs) and CD144+ endothelial cells (ECs) were separately investigated in rats with POI. Methods: POI rats were classified into control POI, POI + CD146+ MSCs, and POI + CD144+ ECs groups. Enriched CD146+ MSCs and CD144+ ECs were directly injected into ovarian tissue (15 × 104 cells/10 µL) in relevant groups. After 4 weeks, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were measured in blood samples. Ovarian tissues were collected and subjected to Hematoxylin-Eosin and Masson's trichrome staining. The expression of angp-2, vegfr-2, smad-2, -4, -6, and tgf-ß1 was studied using qRT-PCR analysis. Histopathological examination indicated an increased pattern of atretic follicles in the POI group related to the control rats (P<0.0001). Results: Data indicated that injection of POI + CD146+ MSCs and CD144+ ECs in POI rats reduced atretic follicles and increased the number of normal follicles (P<0.01). Along with these changes, the content of blue-colored collagen fibers was diminished after cell transplantation. Besides, cell transplantation in POI rats had the potential to reduce increased FSH, and LH levels (P<0.05). In contrast, E2 content was increased in POI + CD146+ MSCs and POI + CD144+ ECs groups compared to control POI rats, indicating restoration of follicular function. CD144+ (smad-2, and -4) and CD146+ (smad-6) cells altered the activity of genes belonging TGF-ß signaling pathway. Unlike POI + CD146+ MSCs, aberrant angiogenesis properties were significantly down-regulated in POI + CD144+ ECs related to the control POI group (P<0.05). Conclusion: The transplantation of bone marrow CD146+ and CD144+ cells can lead to the restoration of ovarian tissue function in POI rats via modulating different mechanisms associated with angiogenesis and fibrosis.

13.
Stem Cell Res Ther ; 14(1): 326, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37953287

ABSTRACT

BACKGROUND: In regenerative medicine, especially skin tissue engineering, the focus is on enhancing the quality of wound healing. Also, several constructs with different regeneration potentials have been used for skin tissue engineering. In this study, the regenerative properties of chitosan-alginate composite hydrogels in skin wound healing under normoxic and hypoxic conditions were investigated in vitro. METHODS: The ionic gelation method was used to prepare chitosan/alginate (CA) hydrogel containing CA microparticles and bioactive agents [ascorbic acid (AA) and α-tocopherol (TP)]. After preparing composite hydrogels loaded with AA and TP, the physicochemical properties such as porosity, pore size, swelling, weight loss, wettability, drug release, and functional groups were analyzed. Also, the hemo-biocompatibility of composite hydrogels was evaluated by a hemolysis test. Then, the rat bone marrow mesenchymal stem cells (rMSCs) were seeded onto the hydrogels after characterization by flow cytometry. The survival rate was analyzed using MTT assay test. The hydrogels were also investigated by DAPI and H&E staining to monitor cell proliferation and viability. To induce hypoxia, the cells were exposed to CoCl2. To evaluate the regenerative potential of rMSCs cultured on CA/AA/TP hydrogels under hypoxic conditions, the expression of the main genes involved in the healing of skin wounds, including HIF-1α, VEGF-A, and TGF-ß1, was investigated by real-time PCR. RESULTS: The results demonstrated that the prepared composite hydrogels were highly porous, with interconnected pores that ranged in sizes from 20 to 188 µm. The evaluation of weight loss showed that the prepared hydrogels have the ability to biodegrade according to the goals of wound healing. The reduction percentage of CA/AA/TP mass in 21 days was reported as 21.09 ± 0.52%. Also, based on wettability and hemolysis tests of the CA/AA/TP, hydrophilicity (θ = 55.6° and 53.7°) and hemocompatibility with a hemolysis ratio of 1.36 ± 0.19 were evident for them. Besides, MTT assay, DAPI, and H&E staining also showed that the prepared hydrogels provide a suitable substrate for cell growth and proliferation. Finally, based on real-time PCR, increased expression levels of VEGF and TGF-ß1 were observed in rMSCs in hypoxic conditions cultured on the prepared hydrogels. CONCLUSIONS: In conclusion, this study provides evidence that 3D CA/AA/TP composite hydrogels seeded by rMSCs in hypoxic conditions have great potential to improve wound healing.


Subject(s)
Chitosan , Mesenchymal Stem Cells , Rats , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Chitosan/pharmacology , Chitosan/chemistry , alpha-Tocopherol/pharmacology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology , Alginates/pharmacology , Hemolysis , Wound Healing , Hypoxia , Weight Loss
14.
Int J Biol Macromol ; 253(Pt 5): 127209, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37804896

ABSTRACT

Osteogenic properties of phenolated alginate (1.2 %) hydrogel containing collagen (0.5 %)/nano-hydroxyapatite (1 %) were studied on human mesenchymal stem cells in vitro. The phenolation rate and physical properties of the hydrogel were assessed using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), swelling ratio, gelation time, mechanical assay, and degradation rate. The viability of encapsulated cells was monitored on days 7, 14, and 21 using an MTT assay. Osteoblast differentiation was studied using western blotting, and real-time PCR. Using PCR array analysis, the role of the Wnt signaling pathway was also investigated. Data showed that the combination of alginate/collagen/nanohydroxyapatite yielded proper mechanical features. The addition of nanohydroxyapatite, and collagen reduced degradation, swelling rate coincided with increased stiffness. Elasticity and pore size were also diminished. NMR and FTIR revealed suitable incorporation of collagen and nanohydroxyapatite in the structure of alginate. Real-time PCR analysis and western blotting indicated the expression of osteoblast-related genes such as Runx2 and osteocalcin. PCR array revealed the induction of numerous genes related to Wnt signaling pathways during the maturation of human stem cells toward osteoblast-like cells. In vivo data indicated that transplantation of phenolated alginate/collagen/nanohydroxyapatite hydrogel led to enhanced de novo bone formation in rats with critical-sized calvarial defects. Phenolated alginate hydrogel can promote the osteogenic capacity of human amniotic membrane mesenchymal stem cells in the presence of nanohydroxyapatite and collagen via engaging the Wnt signaling pathway.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Rats , Animals , Hydrogels/chemistry , Wnt Signaling Pathway , Alginates/chemistry , Collagen/metabolism , Cell Differentiation , Cells, Cultured , Tissue Scaffolds/chemistry
15.
Tissue Cell ; 85: 102215, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716177

ABSTRACT

Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.


Subject(s)
Fibroins , Mesenchymal Stem Cells , Female , Humans , Fibroins/chemistry , Tissue Scaffolds/chemistry , Amnion , Cell Differentiation , Germ Cells , Cells, Cultured
16.
Antibiotics (Basel) ; 12(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627717

ABSTRACT

This cross-sectional study investigated the microbial landscape and antibiotic-resistance patterns in patients with bacterial pneumonia, with a focus on the impact of COVID-19. Sputum samples from individuals with bacterial pneumonia, including coronavirus disease 2019-positive polymerase chain reaction (COVID-19-PCR+), COVID-19-PCR- and non-COVID-19 patients, were analyzed. Surprisingly, the classic etiological factor of bacterial pneumonia, Streptococcus pneumoniae, was rarely isolated from the sputum samples. Furthermore, the frequency of multidrug-resistant pathogens was found to be higher in non-COVID-19 patients, highlighting the potential impact of the pandemic on antimicrobial resistance. Strains obtained from COVID-19-PCR+ patients exhibited significant resistance to commonly used antibiotics, including fluoroquinolones and cephalosporins. Notably, the ESKAPE pathogens, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Enterobacter aerogenes, were identified among the isolated microorganisms. Our findings underscore the urgent need for infection control measures and responsible antibiotic use in healthcare settings, as well as the importance of enhancing pneumonia diagnostics and implementing standardized laboratory protocols.

17.
Gene ; 884: 147689, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37543220

ABSTRACT

Recurrent miscarriage (RM) is a complex reproductive medicine disease that affects many families. The cause of RM is unclear at this time; however, lifestyle and genetic variables may influence the process. The slight alteration in miRNA expression has enormous consequences for a variety of difficulties, one of which may be RM. The target of this systematic study was to provide a framework of the dysregulated miRNAs in RM. The Prisma guidelines were applied to perform current systematic review pertaining to articles in the seven databases. Thirty-nine papers out of 245 received fulfilled all inclusion requirements. From all the mentioned miRNAs, 40 were up-regulated (65.57 %), whereas 21 were down-regulated (34.43 %). These dysregulated miRNAs contributed to the pathophysiology of RM by influencing key pathways and processes such as apoptosis, angiogenesis, epithelial-mesenchymal transition, and the immune system. Understanding the dysregulation of miRNAs, as well as the pathways and processes that engage these miRNAs and impact disease pathogenesis, may aid in clarifying the unknown underlying mechanisms of RM and the development of novel molecular therapeutic targets and medical domains.


Subject(s)
Abortion, Habitual , MicroRNAs , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Abortion, Habitual/genetics , Immune System/metabolism
18.
J Ovarian Res ; 16(1): 118, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370156

ABSTRACT

In the current study, we investigated the regenerative effects of amniotic fluid exosomes (AF-Exos) in a rat model for premature ovarian insufficiency (POI). POI is a condition characterized by a decrease in ovarian function that can lead to infertility. We induced POI by administering cyclophosphamide (CTX) for 15 consecutive days, and then transplanted AF-Exos directly into both ovarian tissues. Four weeks later, we measured the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2), and performed histopathological evaluations using H & E and Masson's trichrome staining. We also monitored the expression of genes related to the TGF-ß signaling pathway using real-time PCR and examined the fertility rate of POI rats after AF-Exos therapy. Histological analysis showed an increase in atretic follicles and a decrease in healthy follicle count after POI induction. Four weeks post-AF-Exos intervention, the healthy follicle count increased (p < 0.01) while the atretic follicle count decreased (p < 0.001). In parallel, the deposition of collagen fibers also decreased following AF-Exos transplantation. The concentrations of FSH and LH hormones in sera remained unchanged after injection of AF-Exos, while E2 levels increased (p < 0.05). The expression of Smad-4 (p < 0.01) and Smad-6 (p < 0.05) was upregulated in POI rats that received AF-Exos, while Smad-2, TGF-ß1, TNF-α, and IL-10 remained statistically unchanged. Our records showed a notable increase in litter number after AF-Exos compared to the non-treated POI rats. These results suggest that AF-Exos transplantation has the potential to restore ovarian function through the TGF-ß/Smads signaling pathway in POI rats.


Subject(s)
Exosomes , Menopause, Premature , Primary Ovarian Insufficiency , Animals , Female , Rats , Amniotic Fluid/metabolism , Exosomes/metabolism , Follicle Stimulating Hormone , Primary Ovarian Insufficiency/therapy , Signal Transduction , Transforming Growth Factor beta
19.
BMC Cancer ; 23(1): 512, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280524

ABSTRACT

Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic
20.
Cancer Cell Int ; 23(1): 118, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337165

ABSTRACT

BACKGROUND: Complexity and heterogeneity of the tumor niche are closely associated with the failure of therapeutic protocols. Unfortunately, most data have been obtained from conventional 2D culture systems which are not completely comparable to in vivo microenvironments. Reconstructed 3D cultures composed of multiple cells are valid cell-based tumor models to recapitulate in vivo-like interaction between the cancer cells and stromal cells and the oncostatic properties of therapeutics. Here, we aimed to assess the tumoricidal properties of melatonin on close-to-real colon cancer tumoroids in in vitro conditions. METHODS: Using the hanging drop method, colon cancer tumoroids composed of three cell lines, including adenocarcinoma HT-29 cells, fibroblasts (HFFF2), and endothelial cells (HUVECs) at a ratio of 2: 1: 1, respectively were developed using 2.5% methylcellulose. Tumoroids were exposed to different concentrations of melatonin, from 0.005 to 0.8 mM and 4 to 10 mM, for 48 h. The survival rate was measured by MTT and LDH leakage assays. Protein levels of endocan and VEGF were assessed using western blotting. Using histological examination (H & E) staining, the integrity of cells within the tumoroid parenchyma was monitored. RESULTS: Despite the reduction of viability rate in lower doses, the structure of tumoroids remained unchanged. In contrast, treatment of tumoroids with higher doses of melatonin, 4 and 10 mM, led to disaggregation of cells and reduction of tumoroid diameter compared to the non-treated control tumoroids (p < 0.05). By increasing melatonin concentration from 4 to 10 mM, the number of necrotic cells increased. Data showed the significant suppression of endocan in melatonin-treated tumoroids related to the non-treated controls (p < 0.05). According to our data, melatonin in higher doses did not alter protein levels of VEGF (p > 0.05). CONCLUSIONS: Melatonin can exert its tumoricidal properties on colon cancer tumoroids via the reduction of tumor cell viability and inhibition of the specific pro-angiogenesis factor.

SELECTION OF CITATIONS
SEARCH DETAIL