Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35736689

ABSTRACT

Sesame (Sesamum indicum L.), the Queen of oilseeds, is infected with different pathogens, restricting its yield. Fusarium oxysporum f. sp. sesami is the most destructive disease of sesame worldwide, causing economic losses. This work aimed to develop new high-yielding strains, resistant and/or tolerant to Fusarium. Two cycles of pedigree selection were achieved under infection of Fusarium oxysporum f. sp. sesami. Two populations in the F2 (600 plants each) were used. The selection criteria were five single traits and another three restricted by yield. The restricted selection was better in preserving variability than the single trait selection. The observed genetic gain in percentage from the mid-parent in the F4-generation was significant for the eight selection criteria. Single trait selection proved to be an effective method for improving the selection criterion, but it caused deleterious effects on the other correlated traits in most cases. The seed yield increased by 30.67% and 20.31% from the better parent in the first and second populations, respectively. The infection% was significantly reduced by 24.04% in the first, and 9.3% in the second, population. The selection index improved seed yield, and its attributes can be recommended.

2.
Plants (Basel) ; 11(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35736755

ABSTRACT

Two cycles of pedigree selection for grain yield/plant (GY/P) and grain weight (GW) (100-grain weight) were imposed under drought stress and normal irrigation to study the direct and indirect selection of GY/P and GW in bread wheat. The selection started in the F6-generation (Cycle0-C0) of bread wheat (Triticum aestivum L.) traced back to the cross (Giza 164/Sids 4) of two Egyptian cultivars. The narrow sense heritability was higher under drought than under normal irrigation and increased by selection. Under drought, the observed direct gain after two cycles of selection for GW was 21.51% (p ≤ 0.01), and accompanied with an indirect gain in GY/P of 15.52%. The observed direct gain for GY/P was 17.98% and the indirect gain in GW was 13.81%. Under normal irrigation, the observed direct gain for GW was 12.86% and the indirect gain for GY/P was 16.04%. The direct gain in GY/P was 16.04% and the indirect gain in GW was 11.95%. The genotypic correlations were different in both environments before and after selection. Single trait selection was effective in improving the selection criterion, and selection greatly affected gene associations.

3.
Sci Rep ; 9(1): 11694, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406132

ABSTRACT

Stem rust (caused by Puccinia graminis f. sp. tritici) is a major disease of wheat. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, a set of 330 genotypes representing two nurseries (DUP2015 and TRP2015) were evaluated for resistance to a Nebraska stem rust race (QFCSC) in two replications. The TRP2015 nursery was also evaluated for its resistance to an additional 13 stem rust races. The analysis of variance revealed significant variation among genotypes in both populations for stem rust resistance. Nine stem rust genes, Sr6, Sr31, Sr1RSAmigo, Sr24, Sr36, SrTmp, Sr7b, Sr9b, and Sr38, were expected and genotyped using gene-specific markers. The results of genetic analysis confirmed the presence of seven stem rust resistance genes. One genotype (NE15680) contained target alleles for five stem rust resistance genes and had a high level of stem rust resistance against different races. Single marker analysis indicated that Sr24 and Sr38 were highly significantly associated with stem rust resistance in the DUP2015 and TRP2015 nurseries, respectively. Linkage disequilibrium analysis identified the presence of 17 SNPs in high linkage with the Sr38-specific marker. These SNPs potentially tagging the Sr38 gene could be used in marker-assisted selection after validating them in additional genetic backgrounds.


Subject(s)
Basidiomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Alleles , Basidiomycota/physiology , Chromosome Mapping , Chromosomes, Plant/chemistry , Gene Frequency , Genetic Markers , Genome-Wide Association Study , Genotype , Linkage Disequilibrium , Nebraska , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Stems/genetics , Plant Stems/immunology , Plant Stems/microbiology , Triticum/immunology , Triticum/microbiology
4.
BMC Plant Biol ; 18(1): 280, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30424724

ABSTRACT

BACKGROUND: Common bunt (caused by Tilletia caries and T. foetida) has been considered as a major disease in wheat (Triticum aestivum) following rust (Puccinia spp.) in the Near East and is economically important in the Great Plains, USA. Despite the fact that it can be easily controlled using seed treatment with fungicides, fungicides often cannot or may not be used in organic and low-input fields. Planting common bunt resistant genotypes is an alternative. RESULTS: To identify resistance genes for Nebraska common bunt race, the global set of differential lines were inoculated. Nine differential lines carrying nine different genes had 0% infected heads and seemed to be resistant to Nebraska race. To understand the genetic basis of the resistance in Nebraska winter wheat, a set of 330 genotypes were inoculated and evaluated under field conditions in two locations. Out of the 330 genotypes, 62 genotypes had different degrees of resistance. Moreover, plant height, chlorophyll content and days to heading were scored in both locations. Using genome-wide association study, 123 SNPs located on fourteen chromosomes were identified to be associated with the resistance. Different degrees of linkage disequilibrium was found among the significant SNPs and they explained 1.00 to 9.00% of the phenotypic variance, indicating the presence of many minor QTLs controlling the resistance. CONCLUSION: Based on the chromosomal location of some of the known genes, some SNPs may be associated with Bt1, Bt6, Bt11 and Bt12 resistance loci. The remaining significant SNPs may be novel alleles that were not reported previously. Common bunt resistance seems to be an independent trait as no correlation was found between a number of infected heads and chlorophyll content, days to heading or plant height.


Subject(s)
Basidiomycota/physiology , Disease Resistance/genetics , Genetic Variation , Genome-Wide Association Study , Plant Diseases/immunology , Triticum/genetics , Genotype , Linkage Disequilibrium , Molecular Sequence Annotation , Phenotype , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Triticum/immunology
5.
Front Plant Sci ; 9: 380, 2018.
Article in English | MEDLINE | ID: mdl-29636761

ABSTRACT

Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene (Xcfd43). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. HIGHLIGHTS: Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...