Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Commun ; 14(1): 4646, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532724

ABSTRACT

Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Risk Factors , Heart Rate/genetics , Genetic Predisposition to Disease , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
2.
Circulation ; 148(6): 487-498, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37401487

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is by far the most common cardiac arrhythmia. In about 3% of individuals, AF develops as a primary disorder without any identifiable trigger (idiopathic or historically termed lone AF). In line with the emerging field of autoantibody-related cardiac arrhythmias, the objective of this study was to explore whether autoantibodies targeting cardiac ion channels can underlie unexplained AF. METHODS: Peptide microarray was used to screen patient samples for autoantibodies. We compared patients with unexplained AF (n=37 pre-existent AF; n=14 incident AF on follow-up) to age- and sex-matched controls (n=37). Electrophysiological properties of the identified autoantibody were then tested in vitro with the patch clamp technique and in vivo with an experimental mouse model of immunization. RESULTS: A common autoantibody response against Kir3.4 protein was detected in patients with AF and even before the development of clinically apparent AF. Kir3.4 protein forms a heterotetramer that underlies the cardiac acetylcholine-activated inwardly rectifying K+ current, IKACh. Functional studies on human induced pluripotent stem cell-derived atrial cardiomyocytes showed that anti-Kir3.4 IgG purified from patients with AF shortened action potentials and enhanced the constitutive form of IKACh, both key mediators of AF. To establish a causal relationship, we developed a mouse model of Kir3.4 autoimmunity. Electrophysiological study in Kir3.4-immunized mice showed that Kir3.4 autoantibodies significantly reduced atrial effective refractory period and predisposed animals to a 2.8-fold increased susceptibility to AF. CONCLUSIONS: To our knowledge, this is the first report of an autoimmune pathogenesis of AF with direct evidence of Kir3.4 autoantibody-mediated AF.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Humans , Animals , Mice , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Induced Pluripotent Stem Cells/metabolism , Heart Atria , Autoantibodies
3.
Eur J Epidemiol ; 37(7): 713-722, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34978666

ABSTRACT

BACKGROUND: Previous observational studies have indicated a protective effect of drinking milk on asthma and allergy. In Mendelian Randomization, one or more genetic variants are used as unbiased markers of exposure to examine causal effects. We examined the causal effect of milk intake on hay fever, asthma, forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) by using the lactase rs4988235 genotype associated with milk intake. METHODS: We performed a Mendelian Randomization study including 363,961 participants from the UK Biobank. RESULTS: Observational analyses showed that self-reported milk-drinkers vs. non-milk drinkers had an increased risk of hay fever: odds ratio (OR) = 1.36 (95% CI 1.32, 1.40, p < 0.001), asthma: OR = 1.33 (95% CI 1.38, 1.29, p < 0.001), yet a higher FEV1: ß = 0.022 (SE = 0.004, p < 0.001) and FVC: ß = 0.026 (SE = 0.005, p < 0.001). In contrast, genetically determined milk-drinking vs. not drinking milk was associated with a lower risk of hay fever: OR = 0.791 (95% CI 0.636, 0.982, p = 0.033), and asthma: OR = 0.587 (95% CI 0.442, 0.779, p = 0.001), and lower FEV1: ß = - 0.154 (standard error, SE = 0.034, p < 0.001) liter, and FVC: ß = - 0.223 (SE = 0.034, p < 0.001) liter in univariable MR analyses. These results were supported by multivariable Mendelian randomization analyses although not statistically significant. CONCLUSIONS: As opposed to observational results, genetic association findings indicate that drinking milk has a protective effect on hay fever and asthma but may also have a negative effect on lung function. The results should be confirmed in other studies before any recommendations can be made.


Subject(s)
Asthma , Rhinitis, Allergic, Seasonal , Asthma/epidemiology , Asthma/genetics , Humans , Lactase/genetics , Lung , Mendelian Randomization Analysis , Rhinitis, Allergic, Seasonal/genetics
4.
Front Immunol ; 12: 629185, 2021.
Article in English | MEDLINE | ID: mdl-33833755

ABSTRACT

The WHO declared the COVID-19 outbreak a public health emergency of international concern. The causative agent of this acute respiratory disease is a newly emerged coronavirus, named SARS-CoV-2, which originated in China in late 2019. Exposure to SARS-CoV-2 leads to multifaceted disease outcomes from asymptomatic infection to severe pneumonia, acute respiratory distress and potentially death. Understanding the host immune response is crucial for the development of interventional strategies. Humoral responses play an important role in defending viral infections and are therefore of particular interest. With the aim to resolve SARS-CoV-2-specific humoral immune responses at the epitope level, we screened clinically well-characterized sera from COVID-19 patients with mild and severe disease outcome using high-density peptide microarrays covering the entire proteome of SARS-CoV-2. Moreover, we determined the longevity of epitope-specific antibody responses in a longitudinal approach. Here we present IgG and IgA-specific epitope signatures from COVID-19 patients, which may serve as discriminating prognostic or predictive markers for disease outcome and/or could be relevant for intervention strategies.


Subject(s)
COVID-19/immunology , Epitopes/immunology , Proteome/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Female , Humans , Immunity, Humoral , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male
5.
PLoS Genet ; 16(1): e1008544, 2020 01.
Article in English | MEDLINE | ID: mdl-31978080

ABSTRACT

The genetic architecture of the small and isolated Greenlandic population is advantageous for identification of novel genetic variants associated with cardio-metabolic traits. We aimed to identify genetic loci associated with body mass index (BMI), to expand the knowledge of the genetic and biological mechanisms underlying obesity. Stage 1 BMI-association analyses were performed in 4,626 Greenlanders. Stage 2 replication and meta-analysis were performed in additional cohorts comprising 1,058 Yup'ik Alaska Native people, and 1,529 Greenlanders. Obesity-related traits were assessed in the stage 1 study population. We identified a common variant on chromosome 11, rs4936356, where the derived G-allele had a frequency of 24% in the stage 1 study population. The derived allele was genome-wide significantly associated with lower BMI (beta (SE), -0.14 SD (0.03), p = 3.2x10-8), corresponding to 0.64 kg/m2 lower BMI per G allele in the stage 1 study population. We observed a similar effect in the Yup'ik cohort (-0.09 SD, p = 0.038), and a non-significant effect in the same direction in the independent Greenlandic stage 2 cohort (-0.03 SD, p = 0.514). The association remained genome-wide significant in meta-analysis of the Arctic cohorts (-0.10 SD (0.02), p = 4.7x10-8). Moreover, the variant was associated with a leaner body type (weight, -1.68 (0.37) kg; waist circumference, -1.52 (0.33) cm; hip circumference, -0.85 (0.24) cm; lean mass, -0.84 (0.19) kg; fat mass and percent, -1.66 (0.33) kg and -1.39 (0.27) %; visceral adipose tissue, -0.30 (0.07) cm; subcutaneous adipose tissue, -0.16 (0.05) cm, all p<0.0002), lower insulin resistance (HOMA-IR, -0.12 (0.04), p = 0.00021), and favorable lipid levels (triglyceride, -0.05 (0.02) mmol/l, p = 0.025; HDL-cholesterol, 0.04 (0.01) mmol/l, p = 0.0015). In conclusion, we identified a novel variant, where the derived G-allele possibly associated with lower BMI in Arctic populations, and as a consequence also leaner body type, lower insulin resistance, and a favorable lipid profile.


Subject(s)
Body Mass Index , Chromosomes, Human, Pair 11/genetics , Inuit/genetics , Polymorphism, Single Nucleotide , Adiposity , Cholesterol/blood , DNA, Intergenic/genetics , Female , Greenland , Humans , Insulin Resistance , Male , Metabolome , Waist Circumference
6.
BMJ ; 366: l4292, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31345923

ABSTRACT

OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diet/adverse effects , Dietary Fats/adverse effects , Adult , Alleles , Diabetes Mellitus, Type 2/genetics , Female , Genome-Wide Association Study , Humans , Incidence , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk Factors
7.
Addiction ; 114(2): 216-225, 2019 02.
Article in English | MEDLINE | ID: mdl-30209858

ABSTRACT

AIMS: To use the rs1229984 variant associated with alcohol consumption as an instrument for alcohol consumption to test the causality of the association of alcohol consumption with hay fever, asthma, allergic sensitization and serum total immunoglobulin (Ig)E. DESIGN: Observational and Mendelian randomization analyses using genetic variants as unbiased markers of exposure to estimate causal effects, subject to certain assumptions. SETTING: Europe. PARTICIPANTS: We included a total of 466 434 people aged 15-82 years from 17 population-based studies conducted from 1997 to 2015. MEASUREMENTS: The rs1229984 (ADH1B) was genotyped; alcohol consumption, hay fever and asthma were self-reported. Specific and total IgE were measured from serum samples. FINDINGS: Observational analyses showed that ever-drinking versus non-drinking, but not amount of alcohol intake, was positively associated with hay fever and inversely associated with asthma but not with allergic sensitization or serum total immunoglobulin (Ig)E. However, Mendelian randomization analyses did not suggest that the observational associations are causal. The causal odds ratio (OR) per genetically assessed unit of alcohol/week was an OR = 0.907 [95% confidence interval (CI) = 0.806, 1.019; P = 0.101] for hay fever, an OR = 0.897 (95% CI = 0.790, 1.019; P = 0.095) for asthma, an OR = 0.971 (95% CI =  0.804, 1.174; P = 0.763) for allergic sensitization and a 4.7% change (95% CI = -5.5%, 14.9%; P = 0.366) for total IgE. CONCLUSIONS: In observational analyses, ever-drinking versus not drinking was positively associated with hay fever and negatively associated with asthma. However, the Mendelian randomization results were not consistent with these associations being causal.


Subject(s)
Alcohol Drinking/adverse effects , Asthma/etiology , Hypersensitivity/etiology , Adolescent , Aged, 80 and over , Alcohol Dehydrogenase/genetics , Alcohol Drinking/epidemiology , Asthma/epidemiology , Denmark/epidemiology , Female , Genotype , Humans , Hypersensitivity/epidemiology , Immunoglobulin E/metabolism , Male , Mendelian Randomization Analysis , Respiratory Function Tests , Rhinitis, Allergic, Seasonal/epidemiology , Rhinitis, Allergic, Seasonal/etiology , Young Adult
8.
Obesity (Silver Spring) ; 26(12): 1915-1922, 2018 12.
Article in English | MEDLINE | ID: mdl-30460774

ABSTRACT

OBJECTIVE: This study aimed to investigate the effect of a genetic risk score (GRS) comprising 15 single-nucleotide polymorphisms, previously shown to associate with childhood BMI, on the baseline cardiometabolic traits and the response to a lifestyle intervention in Danish children and adolescents. METHODS: Children and adolescents with overweight or obesity (n = 920) and a population-based control sample (n = 698) were recruited. Anthropometric and biochemical measures were obtained at baseline and in a subgroup of children and adolescents with overweight or obesity again after 6 to 24 months of lifestyle intervention (n = 754). The effects of the GRS were examined by multiple linear regressions using additive genetic models. RESULTS: At baseline, the GRS associated with BMI standard deviation score (SDS) both in children and adolescents with overweight or obesity (ß = 0.033 [SE = 0.01]; P = 0.001) and in the population-based sample (ß = 0.065 [SE = 0.02]; P = 0.001). No associations were observed for cardiometabolic traits. The GRS did not influence changes in BMI SDS or cardiometabolic traits following lifestyle intervention. CONCLUSIONS: A GRS for childhood BMI was associated with BMI SDS but not with other cardiometabolic traits in Danish children and adolescents. The GRS did not influence treatment response following lifestyle intervention.


Subject(s)
Body Mass Index , Genetic Predisposition to Disease/genetics , Obesity/therapy , Polymorphism, Single Nucleotide/genetics , Weight Loss/genetics , Adolescent , Child , Denmark , Female , Humans , Life Style , Male
9.
Diabetologia ; 61(8): 1769-1779, 2018 08.
Article in English | MEDLINE | ID: mdl-29855666

ABSTRACT

AIMS/HYPOTHESIS: A genetic risk score (GRS) consisting of 53 insulin resistance variants (GRS53) was recently demonstrated to associate with insulin resistance in adults. We speculated that the GRS53 might already associate with insulin resistance during childhood, and we therefore aimed to investigate this in populations of Danish children and adolescents. Furthermore, we aimed to address whether the GRS associates with components of the metabolic syndrome and altered body composition in children and adolescents. METHODS: We examined a total of 689 children and adolescents who were overweight or obese and 675 children and adolescents from a population-based study. Anthropometric data, dual-energy x-ray absorptiometry scans, BP, fasting plasma glucose, fasting serum insulin and fasting plasma lipid measurements were obtained, and HOMA-IR was calculated. The GRS53 was examined for association with metabolic traits in children by linear regressions using an additive genetic model. RESULTS: In overweight/obese children and adolescents, the GRS53 associated with higher HOMA-IR (ß = 0.109 ± 0.050 (SE); p = 2.73 × 10-2), fasting plasma glucose (ß = 0.010 ± 0.005 mmol/l; p = 2.51 × 10-2) and systolic BP SD score (ß = 0.026 ± 0.012; p = 3.32 × 10-2) as well as lower HDL-cholesterol (ß = -0.008 ± 0.003 mmol/l; p = 1.23 × 10-3), total fat-mass percentage (ß = -0.143 ± 0.054%; p = 9.15 × 10-3) and fat-mass percentage in the legs (ß = -0.197 ± 0.055%; p = 4.09 × 10-4). In the population-based sample of children, the GRS53 only associated with lower HDL-cholesterol concentrations (ß = -0.007 ± 0.003 mmol/l; p = 1.79 × 10-2). CONCLUSIONS/INTERPRETATION: An adult-based GRS comprising 53 insulin resistance susceptibility SNPs associates with insulin resistance, markers of the metabolic syndrome and altered fat distribution in a sample of Danish children and adolescents who were overweight or obese.


Subject(s)
Genetic Predisposition to Disease , Insulin Resistance , Overweight/genetics , Pediatric Obesity/genetics , Adolescent , Adult , Anthropometry , Body Composition , Child , Cholesterol, HDL/metabolism , Denmark , Diabetes Mellitus, Type 2 , Genotype , Humans , Linear Models , Metabolic Syndrome/metabolism , Middle Aged , Phenotype , Risk
10.
BMC Genet ; 19(1): 15, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29548277

ABSTRACT

BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused by a dysfunctional Kv11.1 voltage-gated potassium channel. Based on these findings in patients with rare variants in hERG, we hypothesized that common variants in hERG may also lead to alterations in glucose homeostasis. Subsequently, we aimed to evaluate the effect of two common gain-of-function variants in hERG (rs36210421 and rs1805123) on QT interval and plasma levels of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon during an oral glucose tolerance test (OGTT). We used two population-based cohorts for evaluation of the effect of common variants in hERG on QT-interval and circulation levels of incretins, insulin and glucagon. The Danish population-based Inter99 cohort (n = 5895) was used to assess the effect of common variants on QT-interval. The Danish ADDITION-PRO cohort was used (n = 1329) to study genetic associations with levels of GLP-1, GIP, insulin and glucagon during an OGTT. RESULTS: Carriers of either the minor A-allele of rs36210421 or the minor G-allele of rs1805123 had ~ 2 ms shorter QT interval per risk allele (p = 0.025 and p = 1.9 × 10- 7). Additionally, both variants were associated with alterations in pancreatic and gut hormone release among carriers. The minor A- allele of rs36210421 was associated with increased GLP-1 and decreased GIP response to oral glucose stimulation, whereas the minor G-allele of rs1805123 is associated with decreased fasting plasma insulin and glucagon release. A genetic risk score combining the two gene variants revealed reductions in glucose-stimulated GIP, as well as suppressed glucagon response to increased glucose levels during an OGTT. CONCLUSIONS: Two common missense polymorphisms of the Kv11.1 voltage-gated hERG potassium channel are associated with alterations in circulating levels of GIP and glucagon, suggesting that hERG potassium channels play a role in fasting and glucose-stimulated release of GIP and glucagon. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT00289237 ). Trial retrospectively registered at February 9, 2006. Studies were approved by the Ethical Committee of the Central Denmark Region (journal no. 20080229) and by the Copenhagen County Ethical Committee (KA 98155).


Subject(s)
ERG1 Potassium Channel/genetics , Fasting , Gastric Inhibitory Polypeptide/blood , Glucagon-Like Peptide 1/blood , Glucagon/blood , Incretins/blood , Long QT Syndrome/genetics , Aged , Cohort Studies , Denmark , ERG1 Potassium Channel/physiology , Female , Gain of Function Mutation , Glucose/metabolism , Glucose Tolerance Test/methods , Humans , Long QT Syndrome/metabolism , Male , Randomized Controlled Trials as Topic , Retrospective Studies , Risk Factors
11.
Nat Genet ; 50(2): 172-174, 2018 02.
Article in English | MEDLINE | ID: mdl-29311636

ABSTRACT

We have identified a variant in ADCY3 (encoding adenylate cyclase 3) associated with markedly increased risk of obesity and type 2 diabetes in the Greenlandic population. The variant disrupts a splice acceptor site, and carriers have decreased ADCY3 RNA expression. Additionally, we observe an enrichment of rare ADCY3 loss-of-function variants among individuals with type 2 diabetes in trans-ancestry cohorts. These findings provide new information on disease etiology relevant for future treatment strategies.


Subject(s)
Adenylyl Cyclases/genetics , Diabetes Mellitus, Type 2/genetics , Loss of Function Mutation , Obesity/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Greenland/epidemiology , Humans , Inuit/genetics , Inuit/statistics & numerical data , Male , Middle Aged , Obesity/complications , Obesity/epidemiology , Risk Factors , Young Adult
12.
Diabetologia ; 61(3): 671-680, 2018 03.
Article in English | MEDLINE | ID: mdl-29305624

ABSTRACT

AIMS/HYPOTHESIS: The secretion of glucagon is controlled by blood glucose and inappropriate secretion of glucagon contributes to hyperglycaemia in diabetes. Besides its role in glucose regulation, glucagon regulates amino acid metabolism in hepatocytes by increasing ureagenesis. Disruption of this mechanism causes hyperaminoacidaemia, which in turn increases glucagon secretion. We hypothesised that hepatic insulin resistance (secondary to hepatic steatosis) via defective glucagon signalling/glucagon resistance would lead to impaired ureagenesis and, hence, increased plasma concentrations of glucagonotropic amino acids and, subsequently, glucagon. METHODS: To examine the association between glucagon and amino acids, and to explore whether this relationship was modified by hepatic insulin resistance, we studied a well-characterised cohort of 1408 individuals with normal and impaired glucose regulation. In this cohort, we have previously reported insulin resistance to be accompanied by increased plasma concentrations of glucagon. We now measure plasma levels of amino acids in the same cohort. HOMA-IR was calculated as a marker of hepatic insulin resistance. RESULTS: Fasting levels of glucagonotropic amino acids and glucagon were significantly and inversely associated in linear regression models (persisting after adjustment for age, sex and BMI). Increasing levels of hepatic, but not peripheral insulin resistance (p > 0.166) attenuated the association between glucagon and circulating levels of alanine, glutamine and tyrosine, and was significantly associated with hyperaminoacidaemia and hyperglucagonaemia. A doubling of the calculated glucagon-alanine index was significantly associated with a 30% increase in hepatic insulin resistance, a 7% increase in plasma alanine aminotransferase levels, and a 14% increase in plasma γ-glutamyltransferase levels. CONCLUSIONS/INTERPRETATION: This cross-sectional study supports the existence of a liver-alpha cell axis in humans: glucagon regulates plasma levels of amino acids, which in turn feedback to regulate the secretion of glucagon. With hepatic insulin resistance, reflecting hepatic steatosis, the feedback cycle is disrupted, leading to hyperaminoacidaemia and hyperglucagonaemia. The glucagon-alanine index is suggested as a relevant marker for hepatic glucagon signalling.


Subject(s)
Amino Acids/blood , Glucagon/blood , Insulin Resistance/physiology , Liver/cytology , Liver/metabolism , Aged , Alanine/blood , Cross-Sectional Studies , Female , Glucose Tolerance Test , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged
13.
Diabetologia ; 60(5): 873-878, 2017 05.
Article in English | MEDLINE | ID: mdl-28184960

ABSTRACT

AIMS/HYPOTHESIS: Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic variants associated with circulating BCAA levels and insulin resistance as instrumental variables. METHODS: We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. RESULTS: Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (ß 0.137 [95% CI 0.08, 0.19] p = 6 × 10-7). However, the GRS for circulating BCAA levels was not associated with fasting insulin levels or HOMA-IR in ADDITION-PRO (ß -0.011 [95% CI -0.053, 0.032] p = 0.6 and ß -0.011 [95% CI -0.054, 0.031] p = 0.6, respectively) or in GWAS results for HOMA-IR from MAGIC (ß for valine-increasing GRS -0.012 [95% CI -0.069, 0.045] p = 0.7). By contrast, the insulin-resistance-increasing GRS was significantly associated with increased BCAA levels in ADDITION-PRO (ß 0.027 [95% CI 0.005, 0.048] p = 0.01) and in GWAS results for serum BCAA levels (ß 1.22 [95% CI 0.71, 1.73] p = 4 × 10-6, ß 0.96 [95% CI 0.45, 1.47] p = 3 × 10-4, and ß 0.67 [95% CI 0.16, 1.18] p = 0.01 for isoleucine, leucine and valine levels, respectively) and instrumental variable analyses in ADDITION-PRO indicated that HOMA-IR is causally related to higher circulating fasting BCAA levels (ß 0.73 [95% CI 0.26, 1.19] p = 0.002). CONCLUSIONS/INTERPRETATION: Our results suggest that higher BCAA levels do not have a causal effect on insulin resistance while increased insulin resistance drives higher circulating fasting BCAA levels.


Subject(s)
Amino Acids, Branched-Chain/blood , Insulin Resistance/physiology , Aged , Amino Acids, Branched-Chain/metabolism , Blood Glucose/metabolism , Fasting/blood , Female , Genome-Wide Association Study , Genotype , Humans , Insulin/blood , Male , Mendelian Randomization Analysis , Middle Aged
14.
PLoS One ; 11(11): e0166738, 2016.
Article in English | MEDLINE | ID: mdl-27846319

ABSTRACT

OBJECTIVES: It has long been discussed whether fitness or fatness is a more important determinant of health status. If the same genetic factors that promote body fat percentage (body fat%) are related to cardiorespiratory fitness (CRF), part of the concurrent associations with health outcomes could reflect a common genetic origin. In this study we aimed to 1) examine genetic correlations between body fat% and CRF; 2) determine whether CRF can be attributed to a genetic risk score (GRS) based on known body fat% increasing loci; and 3) examine whether the fat mass and obesity associated (FTO) locus associates with CRF. METHODS: Genetic correlations based on pedigree information were examined in a family based cohort (n = 230 from 55 families). For the genetic association analyses, we examined two Danish population-based cohorts (ntotal = 3206). The body fat% GRS was created by summing the alleles of twelve independent risk variants known to associate with body fat%. We assessed CRF as maximal oxygen uptake expressed in millilitres of oxygen uptake per kg of body mass (VO2max), per kg fat-free mass (VO2maxFFM), or per kg fat mass (VO2maxFM). All analyses were adjusted for age and sex, and when relevant, for body composition. RESULTS: We found a significant negative genetic correlation between VO2max and body fat% (ρG = -0.72 (SE ±0.13)). The body fat% GRS associated with decreased VO2max (ß = -0.15 mL/kg/min per allele, p = 0.0034, age and sex adjusted). The body fat%-increasing FTO allele was associated with a 0.42 mL/kg/min unit decrease in VO2max per allele (p = 0.0092, age and sex adjusted). Both associations were abolished after additional adjustment for body fat%. The fat% increasing GRS and FTO risk allele were associated with decreased VO2maxFM but not with VO2maxFFM. CONCLUSIONS: Our findings suggest a shared genetic etiology between whole body fat% and CRF.


Subject(s)
Adipose Tissue , Body Composition/genetics , Cardiorespiratory Fitness , Obesity/genetics , Adipose Tissue/metabolism , Adipose Tissue/physiopathology , Adult , Body Mass Index , Body Weight , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Obesity/physiopathology , Oxygen Consumption/genetics
15.
Am J Clin Nutr ; 99(1): 79-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24153340

ABSTRACT

BACKGROUND: The significance of erythrocyte membrane fatty acids (EMFAs) and their ratios to predict hyperglycemia and incident type 2 diabetes is unclear. OBJECTIVE: We investigated EMFAs as predictors of the worsening of hyperglycemia and incident type 2 diabetes in a 5-y follow-up of a population-based study. DESIGN: We measured EMFAs in 1346 Finnish men aged 45-73 y at baseline [mean ± SD age: 55 ± 6 y; body mass index (in kg/m(2)): 26.5 ± 3.5]. Our prospective follow-up study included only men who were nondiabetic at baseline and who had data available at the 5-y follow-up visit (n = 735). RESULTS: Our study showed that, after adjustment for confounding factors, palmitoleic acid (16:1n-7; P = 2.8 × 10(-7)), dihomo-γ-linolenic acid (20:3n-6; P = 2.3 × 10(-4)), the ratio of 16:1n-7 to 16:0 (P = 1.6 × 10(-8)) as a marker of stearoyl coenzyme A desaturase 1 activity, and the ratio of 20:3n-6 to 18:2n-6 (P = 9.4 × 10(-7)) as a marker of Δ(6)-desaturase activity significantly predicted the worsening of hyperglycemia (glucose area under the curve in an oral-glucose-tolerance test). In contrast, linoleic acid (18:2n-6; P = 0.0015) and the ratio of 18:1n-7 to 16:1n-7 (P = 1.5 × 10(-9)) as a marker of elongase activity had opposite associations. Statistical significance persisted even after adjustment for baseline insulin sensitivity, insulin secretion, and glycemia. Palmitoleic acid (P = 0.010) and the ratio of 16:1n-7 to 16:0 (P = 0.004) nominally predicted incident type 2 diabetes, whereas linoleic acid had an opposite association (P = 0.004), and n-3 polyunsaturated fatty acids did not show any associations. CONCLUSION: EMFAs and their ratios are associated longitudinally with changes in glycemia and the risk type 2 diabetes.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/prevention & control , Erythrocyte Membrane/metabolism , Fatty Acids/blood , 8,11,14-Eicosatrienoic Acid/blood , Aged , Biomarkers/blood , Body Mass Index , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Fatty Acids, Monounsaturated/blood , Fatty Acids, Omega-3/blood , Finland , Follow-Up Studies , Glucose Tolerance Test , Humans , Hyperglycemia/blood , Hyperglycemia/complications , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Linear Models , Linoleic Acid/blood , Male , Middle Aged , Prospective Studies , Risk Factors , Stearoyl-CoA Desaturase/metabolism , White People
16.
Diabetes Care ; 36(11): 3732-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24026559

ABSTRACT

OBJECTIVE: We investigated the association of fasting serum glycerol and fatty acids (FAs) as predictors for worsening of hyperglycemia and incident type 2 diabetes. RESEARCH DESIGN AND METHODS: Cross-sectional and longitudinal analyses of the population-based METabolic Syndrome in Men (METSIM) Study included 9,398 Finnish men (mean age 57 ± 7 years). At baseline, levels of serum glycerol, free FAs (FFAs), and serum FA profile, relative to total FAs, were measured with proton nuclear magnetic resonance spectroscopy. RESULTS: At baseline, levels of glycerol, FFAs, monounsaturated FAs, saturated FAs, and monounsaturated n-7 and -9 FAs, relative to total FAs, were increased in categories of fasting and 2-h hyperglycemia, whereas the levels of n-3 and n-6 FAs, relative to total FAs, decreased (N = 9,398). Among 4,335 men with 4.5-year follow-up data available, 276 developed type 2 diabetes. Elevated levels of glycerol, FFAs, monounsaturated FAs, and saturated and monounsaturated n-7 and -9 FAs, relative to total FAs, predicted worsening of hyperglycemia and development of incident type 2 diabetes after adjustment for confounding factors. n-6 FAs, mainly linoleic acid (LA), relative to total FAs, were associated with reduced risk for the worsening of hyperglycemia and conversion to type 2 diabetes. CONCLUSIONS: Our large population-based study shows that fasting serum levels of glycerol, FFAs, monounsaturated FAs, saturated FAs, and n-7 and -9 FAs are biomarkers for an increased risk of development of hyperglycemia and type 2 diabetes, whereas high levels of serum n-6 FAs, reflecting dietary intake of LA, were associated with reduced risk for hyperglycemia and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Fatty Acids/blood , Glycerol/blood , Hyperglycemia/epidemiology , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Fatty Acids, Monounsaturated/blood , Fatty Acids, Nonesterified/blood , Finland/epidemiology , Humans , Hyperglycemia/blood , Male , Middle Aged , White People
17.
Diabetes ; 62(10): 3618-26, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23557707

ABSTRACT

We investigated the association of the levels of ketone bodies (KBs) with hyperglycemia and with 62 genetic risk variants regulating glucose levels or type 2 diabetes in the population-based Metabolic Syndrome in Men (METSIM) study, including 9,398 Finnish men without diabetes or newly diagnosed type 2 diabetes. Increasing fasting and 2-h plasma glucose levels were associated with elevated levels of acetoacetate (AcAc) and ß-hydroxybutyrate (BHB). AcAc and BHB predicted an increase in the glucose area under the curve in an oral glucose tolerance test, and AcAc predicted the conversion to type 2 diabetes in a 5-year follow-up of the METSIM cohort. Impaired insulin secretion, but not insulin resistance, explained these findings. Of the 62 single nucleotide polymorphisms associated with the risk of type 2 diabetes or hyperglycemia, the glucose-increasing C allele of GCKR significantly associated with elevated levels of fasting BHB levels. Adipose tissue mRNA expression levels of genes involved in ketolysis were significantly associated with insulin sensitivity (Matsuda index). In conclusion, high levels of KBs predicted subsequent worsening of hyperglycemia, and a common variant of GCKR was significantly associated with BHB levels.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Hyperglycemia/blood , Ketone Bodies/blood , Polymorphism, Single Nucleotide , 3-Hydroxybutyric Acid/blood , Acetoacetates/blood , Area Under Curve , Biomarkers/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Fasting , Finland/epidemiology , Genome-Wide Association Study , Glucose Tolerance Test , Humans , Hyperglycemia/epidemiology , Hyperglycemia/genetics , Male , Metabolic Syndrome/blood , Metabolic Syndrome/epidemiology , Middle Aged , Predictive Value of Tests , Risk Factors , White People/genetics
18.
Diabetes ; 61(3): 626-31, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22228719

ABSTRACT

The increasing prevalence of obesity in urban Indian children is indicative of an impending crisis of metabolic disorders. Although perturbations in the secretion of adipokines and inflammatory molecules in childhood obesity are well documented, the contribution of common variants of genes encoding them is not well investigated. We assessed the association of 125 common variants from 21 genes, encoding adipocytokines and inflammatory markers in 1,325 urban Indian children (862 normal weight [NW group] and 463 overweight/obese [OW/OB group]) and replicated top loci in 1,843 Indian children (1,399 NW children and 444 OW/OB children). Variants of four genes (PBEF1 [rs3801266] [P = 4.5 × 10(-4)], IL6 [rs2069845] [P = 8.7 × 10(-4)], LEPR [rs1137100] [P = 1.8 × 10(-3)], and IL6R [rs7514452] [P = 2.1 × 10(-3)]) were top signals in the discovery sample. Associations of rs2069845, rs1137100, and rs3801266 were replicated (P = 7.9 × 10(-4), 8.3 × 10(-3), and 0.036, respectively) and corroborated in meta-analysis (P = 2.3 × 10(-6), 3.9 × 10(-5), and 4.3 × 10(-4), respectively) that remained significant after multiple testing corrections. These variants also were associated with quantitative measures of adiposity (weight, BMI, and waist and hip circumferences). Allele dosage analysis of rs2069845, rs1137100, and rs3801266 revealed that children with five to six risk alleles had an approximately four times increased risk of obesity than children with less than two risk alleles (P = 1.2 × 10(-7)). In conclusion, our results demonstrate the association of the common variants of IL6, LEPR, and PBEF1 with obesity in Indian children.


Subject(s)
Cytokines/genetics , Interleukin-6/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Receptors, Leptin/genetics , Adolescent , Alleles , Child , Female , Genetic Predisposition to Disease , Genetic Variation , Humans , India , Male
19.
J Hum Genet ; 56(10): 720-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21814223

ABSTRACT

Common variants of fat mass and obesity-associated gene (FTO, fat mass- and obesity-associated gene) have been shown to be associated with obesity and type 2 diabetes in population of European and non-European ethnicity. However, studies in Indian population have provided inconsistent results. Here, we examined association of eight FTO variants (rs1421085, rs8050136, rs9939609, rs9930506, rs1861867, rs9926180, rs2540769 and rs708277) with obesity and type 2 diabetes in 5364 North Indians (2474 type 2 diabetes patients and 2890 non-diabetic controls) in two stages. None of the variants including previously reported intron 1 variants (rs1421085, rs8050136, rs9939609 and rs9930506) showed body mass index (BMI)-dependent/independent association with type 2 diabetes. However, rs1421085, rs8050136 and rs9939609 were associated with obesity status and measures of obesity (BMI, waist circumference and waist-to-hip ratio) in stage 2 and combined study population. Meta-analysis of the two study population results also revealed that rs1421085, rs8050136 and rs9939609 were significantly associated with BMI both under the random- and fixed-effect models (P (random/fixed)=0.02/0.0001, 0.004/0.0006 and 0.01/0.01, respectively). In conclusion, common variants of FTO were associated with obesity, but not with type 2 diabetes in North Indian population.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Obesity/genetics , Proteins/genetics , White People/genetics , Adult , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Genetic Variation , Humans , India , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...