Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 270: 115841, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38113799

ABSTRACT

N-nitrosodiethylamine (ND) is an extremely toxic unavoidable environmental contaminant. CopperII-albumin (CuAB) complex, a newly developed Cu complex, showed antioxidant and anti-inflammatory potential. Hereby, we explored the plausible neuroprotective role of CuAB complex toward ND-evoked neurotoxicity in mice. Twenty-four male mice were sorted into 4 groups (6 mice each). Control group, mice were administered oral distilled water; and CuAB group, mice received CuAB complex at a dose of 817 µg/kg orally, three times weekly. In ND group, ND was given intraperitoneally (50 mg/kg body weight, once weekly for 6 w). CuAB+ND group, mice were administered a combination of CuAB and ND. The brain was quickly extracted upon completion of the experimental protocol for the evaluation of the oxidative/antioxidative markers, inflammatory cytokines, and histopathological examination. Oxidative stress was induced after ND exposure indicated by a reduction in GSH and SOD1 level, with increased MDA level. In addition, decreased expression of SOD1 proteins, Nrf2, and 5-HT mRNA expression levels were noticed. An apoptotic cascade has also been elicited, evidenced by overexpression of Cyt c, Cl. Casp 3. In addition, increased regulation of proinflammatory genes (TNF-α, IL-6, iNOS, Casp1, and NF-κB (p65/p50); besides, increment of protein expression of P-IKBα and reduced expression of IKBα. Pretreatment with CuAB complex significantly ameliorated ND neuronal damage. Our results recommend CuAB complex supplementation because it exerts neuroprotective effects against ND-induced toxicity.


Subject(s)
Copper , Neurotoxicity Syndromes , Mice , Male , Animals , Copper/toxicity , Diethylnitrosamine/pharmacology , Superoxide Dismutase-1/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Signal Transduction , Antioxidants/pharmacology , Antioxidants/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , NF-E2-Related Factor 2/metabolism
2.
Toxins (Basel) ; 14(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36136543

ABSTRACT

Aflatoxin B1 (AF) is an unavoidable environmental pollutant that contaminates food, feed, and grains, which seriously threatens human and animal health. Arabic gum (AG) has recently evoked much attention owing to its promising therapeutic potential. Thus, the current study was conducted to look into the possible mechanisms beyond the ameliorative activity of AG against AF-inflicted hepatic injury. Male Wistar rats were assigned into four groups: Control, AG (7.5 g/kg b.w/day, orally), AF (200 µg/kg b.w), and AG plus AF group. AF induced marked liver damage expounded by considerable changes in biochemical profile and histological architecture. The oxidative stress stimulated by AF boosted the production of plasma malondialdehyde (MDA) level along with decreases in the total antioxidant capacity (TAC) level and glutathione peroxidase (GPx) activity. Additionally, AF exposure was associated with down-regulation of the nuclear factor erythroid2-related factor2 (Nrf2) and superoxide dismutase1 (SOD1) protein expression in liver tissue. Apoptotic cascade has also been evoked following AF-exposure, as depicted in overexpression of cytochrome c (Cyto c), cleaved Caspase3 (Cl. Casp3), along with enhanced up-regulation of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-B transcription factor/p65 (NF-κB/p65) mRNA expression levels. Interestingly, the antioxidant and anti-inflammatory contents of AG may reverse the induced oxidative damage, inflammation, and apoptosis in AF-exposed animals.


Subject(s)
Environmental Pollutants , NF-E2-Related Factor 2 , Aflatoxin B1/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Caspase 3/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Environmental Pollutants/metabolism , Glutathione Peroxidase/metabolism , Inflammation Mediators/metabolism , Interleukins/metabolism , Liver/metabolism , Male , Malondialdehyde/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Rats , Rats, Wistar , Superoxide Dismutase-1/metabolism , Superoxides/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...