Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36140861

ABSTRACT

In this study, 'Béjaoui' Cucurbita maxima seeds variety were exposed to both microwave and roasting prior to oil cold press extraction. In addition, full-fat mayonnaise formula from untreated and treated pumpkin seed oils was prepared and assessed for their physical stabilities and bioactive properties in 28-day storage at 25 ± 1 °C. A mayonnaise sample prepared with unrefined sunflower seed oil served as a control. The results showed that the microwave pretreatment of seeds greatly enhanced the oxidative stability of the pumpkin seed oil, which increased from 3 h 46 min ± 10 min in the untreated sample to 4 h 32 min ± 14 min in the microwave cold press pumpkin seed oil. The sterol content increased from 4735 ± 236.75 mg/kg oil in the untreated cold press pumpkin seed oil to 5989 ± 299.45 mg/kg oil and 7156 ± 357.8 mg/kg in the microwave cold press pumpkin seed oil and the roasted cold press pumpkin seed oil, respectively. The mayonnaise prepared with microwave cold press pumpkin seed oil exhibited the lowest creaming index and was more stable to droplet growth when compared to the other mayonnaise samples. All mayonnaise samples prepared with pumpkin seed oils exhibited higher total phenolic contents and antioxidant activities during storage when compared to the mayonnaise sample prepared with unrefined sunflower seed oil. Among pumpkin seed oil mayonnaise samples, the highest values were, however, observed in the one prepared with microwave cold press pumpkin seed oil. Thanks to its high nutraceuticals, the latter could be confidently regarded as a natural fat substitute for commercial stable vegetable oils mayonnaise type emulsions.

2.
J Oleo Sci ; 71(8): 1117-1133, 2022.
Article in English | MEDLINE | ID: mdl-35922928

ABSTRACT

The present study provides the fatty acid, tocopherol, phytosterol, and polyphenol profiles of some Mediterranean oils extracted from pumpkin, melon, and black cumin seed oils and those of dietary argan seed oil. Gas chromatography analysis revealed that oleic and linoleic acids were the most abundant fatty acids. Argan and melon seed oils exhibited the highest levels of oleic acid (47.32±0.02%) and linoleic acid (58.35±0.26%), respectively. In terms of tocopherols, melon seed oil showed the highest amount (652.1±3.26 mg/kg) with a predominance of γ-tocopherol (633.1±18.81 mg/kg). The phytosterol content varied between 2237.00±37.55 µg/g for argan oil to 6995.55±224.01 µg/g for melon seed oil. High Performance Liquid Chromatography analysis also revealed the presence of several polyphenols: vanillin (0.59 mg equivalents Quercetin/100 g) for melon seed oil, and p-hydroxycinnamic acid (0.04 mg equivalents Quercetin/100 g), coumarine (0.05 mg equivalents Quercetin/100 g), and thymoquinone (1.2 mg equivalents Quercetin/100 g) for black cumin seed oil. The "Kit Radicaux Libres" (KRL) assay used to evaluate the scavenging properties of the oils showed that black cumin seed oil was the most efficient. On the light of the richness of all Mediterranean oil samples in bioactive compounds, the seed oils studied can be considered as important sources of nutrients endowed with cytoprotective properties which benefits in preventing age-related diseases which are characterized by an enhanced oxidative stress.


Subject(s)
Phytosterols , Tocopherols , Fatty Acids/analysis , Nutrients/analysis , Plant Oils/chemistry , Polyphenols/analysis , Quercetin , Sterols/analysis , Tocopherols/analysis
3.
Food Sci Technol Int ; 22(4): 277-87, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26163565

ABSTRACT

Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50 ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications.


Subject(s)
Gum Arabic/chemistry , Plant Gums/chemistry , Prunus dulcis/chemistry , Rheology , Food Additives/chemistry , Galactans/analysis , Linear Models , Models, Theoretical , Temperature , Viscosity
4.
Food Sci Technol Int ; 20(1): 33-43, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23733822

ABSTRACT

The use of coatings is a technique used to increase postharvest life of the fruit. Almond gum exudate was used, in comparison with gum arabic, at concentrations of 10% as a novel edible coating, to preserve the quality parameters of tomato (Solanumlycopersicum). Fruits were harvested at the mature-green stage of ripening. Results showed that the coatings delayed significantly (p < 0.05) the changes in color, weight loss, firmness, titratable acidity, ascorbic acid content, soluble solids concentration, and decay percentage compared to uncoated control fruits. Sensory evaluation proved the efficacy of 10% almond gum and gum arabic coatings to maintain the overall quality of tomato fruits during storage period (20 days). In addition, the difference between gum arabic and almond gum coatings was not significant (p > 0.05) except for pulp color. Therefore, we can suggest the use of almond gum exudate as a novel edible coating extends the shelf-life of tomato fruits on postharvest.


Subject(s)
Food Preservation/methods , Food Quality , Plant Preparations/pharmacology , Prunus , Solanum lycopersicum/chemistry , Analysis of Variance , Ascorbic Acid/analysis , Color , Food Storage/methods , Gum Arabic/pharmacology , Hydrogen-Ion Concentration
5.
J Sci Food Agric ; 92(6): 1171-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22095748

ABSTRACT

BACKGROUND: Zizyphus lotus seeds are an unutilized source of vegetable oil and protein and nothing has been reported on their physicochemical characteristics which would indicate the potential uses of these seeds. RESULTS: The percentage composition of the Zizyphus lotus seeds is (on a dry-weight basis): ash 1.05%, oil 32.92%, protein 19.11%, total carbohydrate 40.87% and moisture 6.05%. Calcium, potassium and magnesium constitute the major minerals of Zizyphus lotus seeds. The seed proteins are rich in threonine, glutamic acid, leucine, arginine and aspartic acid (26.73%, 17.28%, 13.11%, 9.47% and 7.76%, respectively). The main fatty acids of the oil are oleic (61.93%), linoleic (18.31%) and palmitic (9.14%) acids. Glycerol trioleate (OOO; O: oleic acid) was the most abundant triacylglycerol, representing 26.48% of the total triacyglycerols. ß-Tocopherol was the major tocopherol (130.47 mg 100 g(-1) ). This oil was rich in Δ7-campestrol and ß-sitosterol (147.82 and 82.10 mg 100 g(-1) oil), respectively. CONCLUSION: Zizyphus lotus seeds are rich in fat and protein which are of potential industrial significance. In addition, Zizyphus lotus L. seed oil contained many bioactive compounds. This fact is of great economic interest owing to several applications of Zizyphus lotus L. seeds in the food, cosmetics and medicinal industries.


Subject(s)
Fatty Acids/analysis , Micronutrients/analysis , Plant Oils/chemistry , Plant Proteins/analysis , Seeds/chemistry , Ziziphus/chemistry , Humans , Nutritive Value
SELECTION OF CITATIONS
SEARCH DETAIL
...