Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(4)2024 04 02.
Article in English | MEDLINE | ID: mdl-38674385

ABSTRACT

Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.


Subject(s)
Prostatic Neoplasms , Transcription Factors , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
2.
Bioorg Chem ; 116: 105329, 2021 11.
Article in English | MEDLINE | ID: mdl-34544028

ABSTRACT

There are current attempts to find a safe substitute or adjuvant for Sorafenib (Sorf), the standard treatment for advanced hepatocellular carcinoma (HCC), as it triggers very harsh side effects and drug-resistance. The therapeutic properties of Bee Venom (BV) and its active component, Melittin (Mel), make them suitable candidates as potential anti-cancer agents per-se or as adjuvants for cancer chemotherapy. Hence, this study aimed to evaluate the combining effect of BV and Mel with Sorf on HepG2 cells and to investigate their molecular mechanisms of action. Docking between Mel and different tumor-markers was performed. The cytotoxicity of BV, Mel and Sorf on HepG2 and THLE-2 cells was conducted. Combinations of BV/Sorf and Mel/Sorf were performed in non-constant ratios on HepG2. Expression of major cancer-related genes and oxidative stress status was evaluated and the cell cycle was analyzed. The computational analysis showed that Mel can bind to and inhibit XIAP, Bcl2, MDM2, CDK2 and MMP12. Single treatments of BV, Mel and Sorf on HepG2 showed lower IC50than on THLE-2. All combinations revealed a synergistic effect at a combination index (CI) < 1. Significant upregulation (p < 0.05) of p53, Bax, Cas3, Cas7 and PTEN and significant downregulation (p < 0.05) of Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF and MMP9 were observed. The oxidative stress markers including MDA, SOD, CAT and GPx showed insignificant changes, while the cell cycle was arrested at G2/M phase. In conclusion, BV and Mel have a synergistic anticancer effect with Sorf on HepG2 that may represent a new enhancing strategy for HCC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Bee Venoms/pharmacology , Melitten/pharmacology , Sorafenib/pharmacology , Antineoplastic Agents/chemistry , Bee Venoms/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Lipid Peroxidation/drug effects , Melitten/chemistry , Molecular Docking Simulation , Molecular Structure , Sorafenib/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...