Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37760713

ABSTRACT

Endo-periodontal lesions are challenging clinical situations where both the supporting tissues and the root canal of the same tooth are infected. In the present study, chlorhexidine (CHX)-loaded calcium hydroxide (CH) pastes were used as intracanal medications (ICMs). They were prepared and tested on pathogens found in both the root canal and the periodontal pocket. Exposure to 0.5% and 1% CHX-loaded ICMs decreased the growth of Porphyromonas gingivalis and was effective in eradicating or inhibiting an Enterococcus faecalis biofilm. CH was injected into the root canal of extracted human teeth immersed in deionized water. CHX-loaded ICMs resulted in the transradicular diffusion of active components outside the tooth through the apex and the lateral dentinal tubules, as shown by the release of CHX (from 3.99 µg/mL to 51.28 µg/mL) and changes in pH (from 6.63 to 8.18) and calcium concentrations (from 2.42 ppm to 14.67 ppm) after 7 days. The 0.5% CHX-loaded ICM was non-toxic and reduced the release of IL-6 by periodontal cells stimulated by P. gingivalis lipopolysaccharides. Results indicate that the root canal may serve as a reservoir for periodontal drug delivery and that CHX-based ICMs can be an adjuvant for the control of infections and inflammation in endo-periodontal lesions.

2.
J Crohns Colitis ; 16(10): 1617-1627, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35997152

ABSTRACT

BACKGROUND AND AIMS: Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota. METHODS: The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively. RESULTS: The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation. CONCLUSIONS: Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.


Subject(s)
Bacteriophages , Colitis , Animals , Humans , Mice , Bacterial Adhesion , Colitis/pathology , Disease Models, Animal , Dysbiosis/complications , Escherichia coli , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Intestinal Mucosa/pathology
3.
Microorganisms ; 9(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34576719

ABSTRACT

The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn's disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain's clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains' ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC's virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans' lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.

4.
Microorganisms ; 9(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671764

ABSTRACT

Toxic metals (such as lead, cadmium, and, to a lesser extent, aluminum) are detrimental to health when ingested in food or water or when inhaled. By interacting with heavy metals, gut and food-derived microbes can actively and/or passively modulate (by adsorption and/or sequestration) the bioavailability of these toxins inside the gut. This "intestinal bioremediation" involves the selection of safe microbes specifically able to immobilize metals. We used inductively coupled plasma mass spectrometry to investigate the in vitro ability of 225 bacteria to remove the potentially harmful trace elements lead, cadmium, and aluminum. Interspecies and intraspecies comparisons were performed among the Firmicutes (mostly lactic acid bacteria, including Lactobacillus spp., with some Lactococcus, Pediococcus, and Carnobacterium representatives), Actinobacteria, and Proteobacteria. The removal of a mixture of lead and cadmium was also investigated. Although the objective of the study was not to elucidate the mechanisms of heavy metal removal for each strain and each metal, we nevertheless identified promising candidate bacteria as probiotics for the intestinal bioremediation of Pb(II) and Cd(II).

5.
Molecules ; 24(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875854

ABSTRACT

New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat due to their virulence and the formation of persistent biofilms forming a complex protecting shell. Parasitic infections caused by Trypanosoma brucei and Leishmania mexicana are also of global concern, because of the mortality due to the low number of safe and effective treatments. Female inflorescences of hop produce specialized metabolites known for their antimicrobial effects but underexploited to fight against drug-resistant microorganisms. In this study, we assessed the antimicrobial potential of phenolic compounds against MRSA clinical isolates, T. brucei and L. mexicana. By fractionation process, we purified the major prenylated chalcones and acylphloroglucinols, which were quantified by UHPLC-UV in different plant parts, showing their higher content in the active flowers extract. Their potent antibacterial action (MIC < 1 µg/mL for the most active compound) was demonstrated against MRSA strains, through kill curves, post-antibiotic effects, anti-biofilm assays and synergy studies with antibiotics. An antiparasitic activity was also shown for some purified compounds, particularly on T. brucei (IC50 < 1 to 11 µg/mL). Their cytotoxic activity was assessed both on cancer and non-cancer human cell lines.


Subject(s)
Anti-Infective Agents/chemistry , Biological Products/chemistry , Humulus/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Biofilms/drug effects , Biological Products/pharmacology , Humans , Leishmania mexicana/drug effects , Leishmania mexicana/pathogenicity , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Parasitic Diseases/drug therapy , Parasitic Diseases/parasitology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/pathogenicity
6.
Article in English | MEDLINE | ID: mdl-24348709

ABSTRACT

Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically.

7.
Clin Vaccine Immunol ; 17(3): 317-24, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20107007

ABSTRACT

Despite the availability of efficacious vaccines, the incidence of whooping cough is still high in many countries and is even increasing in countries with high vaccine coverage. Most severe and life-threatening pertussis cases occur in infants who are too young to be sufficiently protected by current vaccine regimens. As a potential solution to this problem, we have developed an attenuated live Bordetella pertussis vaccine strain, named BPZE1. Here, we show that after a single administration, BPZE1 induces dose-dependent protection against challenge with virulent B. pertussis in low-dose and in high-dose intranasal mouse lung colonization models. In addition, we observed BPZE1 dose-dependent antibody titers to B. pertussis antigens, as well as cell-mediated immunity, evidenced by the amounts of gamma interferon (IFN-gamma) released from spleen cells upon stimulation with B. pertussis antigens. These two parameters may perhaps be used as readouts in clinical trials in humans that are currently being planned.


Subject(s)
Pertussis Vaccine/administration & dosage , Pertussis Vaccine/immunology , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Bordetella pertussis/immunology , Enzyme-Linked Immunosorbent Assay , Female , Mice , Mice, Inbred BALB C , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Whooping Cough/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL