Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 31(7): 2220-2239, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37194237

ABSTRACT

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo over time. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain, exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEV transfer at physiological levels, which will shed light on the role of bdEVs in neural communication within the brain and beyond.


Subject(s)
Extracellular Vesicles , Integrases , Mice , Animals , Mice, Transgenic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Integrases/genetics , Integrases/metabolism , Brain/metabolism , Extracellular Vesicles/metabolism
2.
Mol Ther ; 31(7): 2206-2219, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37198883

ABSTRACT

X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a retrotransposon insertion in intron 32 of the TAF1 gene. This insertion causes mis-splicing of intron 32 (TAF1-32i) and reduced TAF1 levels. TAF1-32i transcript is unique to XDP patient cells and can be detected in their extracellular vesicles (EVs). We engrafted patient and control iPSC-derived neural progenitor cells (hNPCs) into the striatum of mice. To track TAF1-32i transcript spread by EVs, we transduced the brain-implanted hNPCs with a lentiviral construct called ENoMi, which consists of a re-engineered tetraspanin scaffold tagged with bioluminescent and fluorescent reporter proteins under an EF-1α promoter. Alongside this improved detection in ENoMi-hNPCs-derived EVs, their surface allows specific immunocapture purification, thereby facilitating TAF1-32i analysis. Using this ENoMi-labeling method, TAF1-32i was demonstrated in EVs released from XDP hNPCs implanted in mouse brains. Post-implantation of ENoMi-XDP hNPCs, TAF1-32i transcript was retrieved in EVs isolated from mouse brain and blood, and levels increased over time in plasma. We compared and combined our EV isolation technique to analyze XDP-derived TAF1-32i with other techniques, including size exclusion chromatography and Exodisc. Overall, our study demonstrates the successful engraftment of XDP patient-derived hNPCs in mice as a tool for monitoring disease markers with EVs.


Subject(s)
Extracellular Vesicles , Neurodegenerative Diseases , Humans , Mice , Animals , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Biomarkers , Brain/metabolism , Extracellular Vesicles/metabolism
3.
J Control Release ; 356: 493-506, 2023 04.
Article in English | MEDLINE | ID: mdl-36907561

ABSTRACT

Diseases of the central nervous system (CNS) are challenging to treat, mainly due to the blood-brain barrier (BBB), which restricts drugs in circulation from entering target regions in the brain. To address this issue extracellular vesicles (EVs) have gained increasing scientific interest as carriers able to cross the BBB with multiplex cargos. EVs are secreted by virtually every cell, and their escorted biomolecules are part of an intercellular information gateway between cells within the brain and with other organs. Scientists have undertaken efforts to safeguard the inherent features of EVs as therapeutic delivery vehicles, such as protecting and transferring functional cargo, as well as loading them with therapeutic small molecules, proteins, and oligonucleotides and targeting them to specific cell types for the treatment of CNS diseases. Here, we review current emerging approaches that engineer the EV surface and cargo to improve targeting and functional responses in the brain. We summarize existing applications of engineered EVs as a therapeutic delivery platform for brain diseases, some of which have been evaluated clinically.


Subject(s)
Brain Diseases , Extracellular Vesicles , Humans , Central Nervous System , Brain , Extracellular Vesicles/metabolism , Brain Diseases/metabolism , Blood-Brain Barrier , Drug Delivery Systems
4.
Cell Rep Methods ; 3(2): 100412, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36936071

ABSTRACT

Tools to effectively demonstrate and quantify functional delivery in cellular communication have been lacking. This study reports the use of a fluorescently labeled split Nanoluc reporter system to demonstrate and quantify functional transfer between cells in vitro and in a subcutaneous tumor mouse model. Our construct allows monitoring of direct, indirect, and specifically extracellular vesicle-mediated functional communication.


Subject(s)
Extracellular Vesicles , Mice , Animals , Extracellular Vesicles/genetics , Luciferases/genetics , Cell Communication , Communication
5.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36811091

ABSTRACT

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo overtime. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEVs transfer at physiological levels which will shed light on the role of bdEVs in neural communication within the brain and beyond.

6.
Commun Biol ; 5(1): 485, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35590035

ABSTRACT

Cell membrane-based biovesicles (BVs) are important candidate drug delivery vehicles and comprise extracellular vesicles, virus-like particles, and lentiviral vectors. Here, we introduce a non-enzymatic assembly of purified BVs, supercharged proteins, and plasmid DNA called pDNA-scBVs. This multicomponent vehicle results from the interaction of negative sugar moieties on BVs and supercharged proteins that contain positively charged amino acids on their surface to enhance their affinity for pDNA. pDNA-scBVs were demonstrated to mediate floxed reporter activation in culture by delivering a Cre transgene. We introduced pDNA-scBVs containing both a CRE-encoding plasmid and a BV-packaged floxed reporter into the brains of Ai9 mice. Successful delivery of both payloads by pDNA-scBVs was confirmed with reporter signal in the striatal brain region. Overall, we developed a more efficient method to load isolated BVs with cargo that functionally modified recipient cells. Augmenting the natural properties of BVs opens avenues for adoptive extracellular interventions using therapeutic loaded cargo.


Subject(s)
DNA , Extracellular Vesicles , Animals , DNA/genetics , Drug Delivery Systems , Extracellular Vesicles/metabolism , Mice , Plasmids , Transgenes
7.
Cell Rep ; 39(2): 110651, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417683

ABSTRACT

Extracellular vesicles (EVs) are membrane-encapsulated particles that carry genetically active and protein/lipid cargo that can affect the function of the recipient cell. A number of studies have described the effect of these vesicles on recipient cells and demonstrated their promise as therapeutic delivery vectors. Here we demonstrate functional delivery of EV-encapsulated RNA and protein cargo through use of luminescence and fluorescence reporters by combining organelle-targeted nanoluciferase with fluorescent proteins. We highlight a mechanism by which cells retain internalized cargo in the endosomal compartment for days, usually leading to content degradation. We also identify a mode through which recipient cells re-release internalized EVs intact after uptake. Highlighting these different fates of EVs in recipient cells sheds light on critical factors in steering functional cargo delivery and will ultimately allow more efficient use of EVs for therapeutic purposes.


Subject(s)
Extracellular Vesicles , Biological Transport , Cell Communication/genetics , Endosomes/metabolism , Extracellular Vesicles/metabolism , Proteins/metabolism , RNA/metabolism
8.
Biomaterials ; 281: 121366, 2022 02.
Article in English | MEDLINE | ID: mdl-35033904

ABSTRACT

The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.


Subject(s)
Extracellular Vesicles , Animals , Biophysical Phenomena , Brain/metabolism , Extracellular Vesicles/metabolism , Mice , Tetraspanins/metabolism
9.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298912

ABSTRACT

The central nervous system (CNS) consists of a heterogeneous population of cells with highly specialized functions. For optimal functioning of the CNS, in disease and in health, intricate communication between these cells is vital. One important mechanism of cellular communication is the release and uptake of extracellular vesicles (EVs). EVs are membrane enclosed particles actively released by cells, containing a wide array of proteins, lipids, RNA, and DNA. These EVs can be taken up by neighboring or distant cells, and influence a wide range of processes. Due to the complexity and relative inaccessibility of the CNS, our current understanding of the role of EVs is mainly derived in vitro work. However, recently new methods and techniques have opened the ability to study the role of EVs in the CNS in vivo. In this review, we discuss the current developments in our understanding of the role of EVs in the CNS in vivo.


Subject(s)
Central Nervous System/metabolism , Extracellular Vesicles/metabolism , Animals , Cell Communication/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...