Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 82(11): 113502, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22128971

ABSTRACT

A cold-cathode penning-type ion source has been developed in our laboratory to study the electric breakdown in this type of sources. The breakdown voltage was measured as a function of axial magnetic field, in the range of 440-600 G, and anode length, in steps of 14, 20, and 24 mm. The measurement was performed with stainless steel cathodes in argon gas at pressure of 4 × 10(-2) mbar. Furthermore, a model was developed to explain the breakdown voltage data. In the construction of the model, the first Townsend coefficient was not directly used to avoid difficulties originating from the non-uniformity of the electric field. The empirical parameters of the model were obtained using the experimental data. The equation γ = c × (E(z)/N)(n), expressing the effective secondary emission coefficient in terms of reduced electric field, which was needed in the modeling process, was inspired from previous works. The parameters c and n were then calculated from the empirical parameters of the model. The n parameter turned out to be 0.59, which differs from the value reported by other authors merely by 1.6%. Three values, 0.010, 0.013, and 0.017 corresponding to the three anodes were obtained for the c parameter. These numbers are in good agreement with 0.01, which has been reported in the previous works. It was also found that the value of n has a decisive impact on the breakdown voltage curve in the high breakdown voltage region.

2.
Phys Rev Lett ; 86(26 Pt 1): 5862-5, 2001 Jun 25.
Article in English | MEDLINE | ID: mdl-11415380

ABSTRACT

A series of measurements have been performed at KVI to obtain the vector analyzing power A(y) of the (2)H(p-->,pd) reaction as a function of incident beam energy at energies of 120, 135, 150, and 170 MeV. For all these measurements, a range of theta(c.m.) from 30 degrees to 170 degrees has been covered. The purpose of these investigations is to observe possible spin-dependent effects beyond two-nucleon forces. When compared to the predictions of Faddeev calculations, based on two-nucleon forces only, significant deviations are observed at all energies and at center-of-mass angles between 70 degrees and 130 degrees. The addition of present-day three-nucleon forces does not improve the description of the data, demonstrating the still insufficient understanding of the properties of three-nucleon systems.

SELECTION OF CITATIONS
SEARCH DETAIL