Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(22): 15232-15239, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38774109

ABSTRACT

The release of toxic azo dyes pollutants in the environment from different industries represents a public health concern and a serious environmental problem. Therefore, the conversion of hazardous methyl orange (MO) azo dye to environmentally benign products is a critical demand. In this work, an eco-friendly Prussian blue analogue (PBA) was synthesized and its catalytic activity toward the reduction of MO was investigated. The PBA copper(ii) hexacyanocobaltate(III) (Cu3[Co(CN)6]2) was synthesized by a facile inexpensive chemical coprecipitation method without using hazardous solvents. The nanocatalyst was characterized using XPS, Raman, FTIR spectroscopy, and XRD. The chemical reduction of MO using NaBH4 and the PBA as nanocatalyst was monitored by UV-VIS spectroscopy. Toxic MO was completely reduced in 105 s with a rate constant (k) 0.0386 s-1 using only 10 µg of the PBA nanocatalyst. Besides the powerful catalytic activity, the nanocatalyst also showed excellent stability and recyclability for ten consecutive cycles, with no significant decrease in the catalytic performance. Therefore, the proposed PBA is a promising, stable, cost-effective, and eco-friendly nanocatalyst for the rapid elimination of hazardous azo dyes.

2.
ACS Omega ; 9(12): 14198-14209, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559915

ABSTRACT

In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-ß-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.

3.
Biosens Bioelectron ; 248: 115971, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154328

ABSTRACT

Apomorphine is a dopamine agonist that is used for the management of Parkinson's disease and has been proven to effectively decrease the off-time duration, where the symptoms recur, in Parkinson's disease patients. This paper describes the design and fabrication of the first potentiometric sensor for the determination of apomorphine in bulk and human plasma samples. The fabrication protocol involves stereolithographic 3D printing, which is a unique tool for the rapid fabrication of low-cost sensors. The solid-contact apomorphine ion-selective electrode combines a carbon-mesh/thermoplastic composite as the ion-to-electron transducer and a 3D printed ion-selective membrane, doped with the ionophore calix[6]arene. The sensor selectively measures apomorphine in the presence of other biologically present cations - sodium, potassium, magnesium, and calcium - as well as the commonly prescribed Parkinson's pharmaceutical, levodopa (L-Dopa). The sensor demonstrated a linear, Nernstian response, with a slope of 58.8 mV/decade over the range of 5.0 mM-9.8 µM, which covers the biologically (and pharmaceutically) relevant ranges, with a limit of detection of 2.51 µM. Moreover, the apomorphine sensor exhibited good stability (minimal drift of just 188 µV/hour over 10 h) and a shelf-life of almost 4 weeks. Experiments performed in the presence of albumin, the main plasma protein to which apomorphine binds, demonstrate that the sensor responds selectively to free-apomorphine (i.e., not bound or complexed forms). The utility of the sensor was confirmed through the successful determination of apomorphine in spiked human plasma samples.


Subject(s)
Biosensing Techniques , Parkinson Disease , Humans , Apomorphine , Parkinson Disease/drug therapy , Ion-Selective Electrodes , Pharmaceutical Preparations , Potentiometry
4.
BMC Chem ; 17(1): 170, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017490

ABSTRACT

Environmental appearance of antimicrobials due to frequent use of personal care products as recommended by WHO can cause serious flare-up of antimicrobial resistance. In this work, three eco-friendly microfabricated copper solid-state sensors were developed for measuring triclosan in water. Multi-walled carbon nanotubes were incorporated in sensor 2 and 3 as hydrophobic conductive inner layer. Meanwhile, ß-cyclodextrin was incorporated in sensor 3 as an ionophore for selective binding of TCS in presence of interfering compounds. The obtained linear responses of sensors 1, 2 and 3 were (1 × 10- 8-1 × 10- 3 M), (1 × 10- 9-1 × 10- 3 M) and (1 × 10- 10- 1 × 10- 3 M), respectively. Limit of detection was 9.87 × 10- 9 M, 9.62 × 10- 10 M, and 9.94 × 10- 11 M, respectively. The miniaturized sensors were utilized for monitoring of triclosan in water samples.

5.
RSC Adv ; 13(36): 25129-25139, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37614794

ABSTRACT

The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional groups. In this research, methyldopa was exploited to fabricate selective MIPs, for the detection of sofosbuvir (SFB), by a simple electropolymerization step onto a disposable pencil graphite electrode (PGE) substrate. The interaction between methyldopa, as a functional monomer, and a template has been investigated experimentally by UV spectroscopy. A polymethyldopa (PMD) polymer was electrografted onto PGE in the presence of SFB as a template. X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (ESI), and cyclic voltammetry (CV) were used for the characterization of the fabricated sensor. Differential pulse voltammetry (DPV) of a ferrocyanide/ferricyanide redox probe was employed to indirectly detect the SFB binding to the MIP cavities. The sensor shows a reproducible and linear response over a dynamic linear range from 1.0 × 10-11 M to 1.0 × 10-13 M of SFB with a limit of detection of 3.1 × 10-14 M. The sensor showed high selectivity for the target drug over structurally similar and co-administered interfering drugs, and this enabled its application to detect SFB in its pharmaceutical dosage form and in spiked human plasma samples.

6.
Anal Bioanal Chem ; 415(22): 5451-5462, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37389600

ABSTRACT

One of the most important reasons for an increased mortality rate of cancer is late diagnosis. Point-of-care (POC) diagnostic sensors can provide rapid and cost-effective diagnosis and monitoring of cancer biomarkers. Portable, disposable, and sensitive sarcosine solid-contact ion-selective potentiometric sensors (SC-ISEs) were fabricated as POC analyzers for the rapid determination of the prostate cancer biomarker sarcosine. Tungsten trioxide nanoparticles (WO3 NPs), polyaniline nanoparticles (PANI NPs), and PANI-WO3 nanocomposite were used as ion-to-electron transducers on screen-printed sensors. WO3 NPs and PANI-WO3 nanocomposite have not been investigated before as ion-to-electron transducer layers in potentiometric SC sensors. The designated sensors were characterized using SEM, XRD, FTIR, UV-VIS spectroscopy, and EIS. The inclusion of WO3 and PANI in SC sensors enhanced the transduction at the interface between the screen-printed SC and the ion-selective membrane, offering lower potential drift, a longer lifetime, shorter response time, and better sensitivity. The proposed sarcosine sensors exhibited Nernstian slopes over linear response ranges 10-3-10-7 M, 10-3-10-8 M, 10-5-10-9 M, and 10-7-10-12 M for control, WO3 NPs, PANI NPs, and PANI-WO3 nanocomposite-based sensors, respectively. From a comparative point of view between the four sensors, PANI-WO3 nanocomposite inclusion offered the lowest potential drift (0.5 mV h-1), the longest lifetime (4 months), and the best LOD (9.95 × 10-13 M). The proposed sensors were successfully applied to determine sarcosine as a potential prostate cancer biomarker in urine without prior sample treatment steps. The WHO ASSURED criteria for point-of-care diagnostics are met by the proposed sensors.


Subject(s)
Nanocomposites , Prostatic Neoplasms , Male , Humans , Biomarkers, Tumor , Sarcosine , Prostate , Polymers/chemistry , Oxides/chemistry , Prostatic Neoplasms/diagnosis , Point-of-Care Testing , Nanocomposites/chemistry
7.
BMC Chem ; 17(1): 30, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016406

ABSTRACT

The objective of this study is to fabricate solid-contact ion selective electrodes (SC-ISEs) that have long term stable potential. Various conducting polymers such as polyaniline and its derivatives have been successfully employed to improve the potential stability in SC-ISEs. Recently, the role of hydrophobicity at the interface between the conducting polymer solid contact and the ion sensing membrane has been investigated and figured out that the hydrophobic interfaces preclude water layer formation that deteriorate the SC-ISEs potential stability and reproducibility. In this work, a hydrophobic polyaniline derivative was fabricated on the surface of a glassy carbon electrode by electropolymerization of perfluorinated aniline monomers in acidic solution. The electropolymerized hydrophobic polymer was characterized by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The fabricated electrode was employed for determination of midazolam-a model drug-in pharmaceutical formulation without prior extraction. The SC-ISEs performance was optimized, and the potential drift was compared to control SC-ISEs, the SC-ISE linear range was 1 × 10-6-1 × 10-2 M, LOD was estimated to be 9.0 × 10-7 M, and potential drift was reduced to 100 µV/h.

8.
RSC Adv ; 13(11): 7645-7655, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36908536

ABSTRACT

Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.

9.
BMC Chem ; 17(1): 16, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36915195

ABSTRACT

This work is dedicated to the greenness estimation of three proposed spectrophotometric techniques [e.g., ratio difference (RD), mean centering of ratio spectra (MCR) and continuous wavelet transform of ratio spectra (CWT)] for the determination of a binary combination named Ofloxacin (OFL) and Ornidazole (ORN). Applying the green analytical chemistry methods to assess the proposed methods has widely attained the analytical community care. The greenness assessment was performed via three evaluation approaches; the "Analytical Eco-Scale", the "National Environmental Method Index" (NEMI) and "Green Analytical Procedure Index" (GAPI). Following the examination of the zero spectrum of OFL and ORN, it is observed that OFL and ORN spectra are overlapped, so they can be detected by the methods mentioned previously. The ratio difference method was carried out at wavelengths of 294.6 nm and 265.6 nm for OFL, 292 nm and 315 nm for ORN. The linear range was (2-15 µg/mL) for OFL and (3-30 µg/mL) for ORN. The MCR method based on the use of mean centered ratio spectra in dual steps and calculating the second ratio spectra mean centered values at 294.6 nm for OFL and 315 nm for ORN. The continuous wavelet transformation which carried out using MATLAB at wavelengths of 265 nm for OFL and 306 for ORN. These techniques were intended for the binary mixture analysis in bulk powder and pharmaceutical formulations with high recoveries. The developed methods were validated according to ICH guidelines. All techniques were statistically compared to either an official method for OFL or a reported method for ORN and the results indicate that there were not any significant differences.

10.
BMC Chem ; 17(1): 27, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36966337

ABSTRACT

INTRODUCTION: Clomipramine is a tricyclic antidepressant acting as a serotonin reuptake inhibitor. Its maximum plasma concentration (Cmax) is 13-310 ng/mL, the therapeutic range is 220-500 ng/mL and its toxic effect appears in doses above 900 ng/mL. OBJECTIVES: The fabrication of eco-friendly solid-contact ion-selective electrodes to evaluate the concentration of Clomipramine in different matrices based on disposable screen-printed carbon electrode. METHODS: Disposable screen-printed carbon electrode was utilized as a substrate to fabricate the proposed sensors. The sensors were optimized to determine Clomipramine using calix[4]arene as an ionophore into PVC polymeric membrane to enhance selectivity towards the target analyte. The solid-contact sensor potential stability was improved by the incorporation of graphene nanoparticles transducer layer. RESULTS: The sensors were assessed as per the IUPAC recommendations. The linearity range was 1 × 10- 2 to 1 × 10- 5.3 M. The sensors were successfully applied to determine CLM in the pharmaceutical formulation. Furthermore, the ion selective electrodes were applied for Clompiramine assay in spiked plasma for the purpose of Point-of-Care testing to be a diagnostic tool for therapeutic monitoring of the cited central nervous system agent. The findings were statistically compared to the reported method showing no statistically significant difference. CONCLUSION: This work was concerned with developing a green analytical method for the determination of Clomipramine. The proposed SC-ISE was mixed with graphene nanocomposite transducer interlayer. The graphene layer succeeded in preventing the formation of an aqueous layer so resulted in a stable, reproducible standard potential besides the rapid response time.

11.
J AOAC Int ; 106(3): 794-803, 2023 May 03.
Article in English | MEDLINE | ID: mdl-36355446

ABSTRACT

BACKGROUND: Dapagliflozin is a sodium glucose cotransporter-II inhibitor while saxagliptin is a dipeptidyl peptidase-4 inhibitor. Both are used to manage type 2 diabetes mellitus. OBJECTIVE: The aim of this work is to develop four simple, accurate, and precise UV-spectrophotometric methods, three univariate and one multivariate, for the estimation of dapagliflozin and saxagliptin in their pure and marketed dosage forms. METHODS: Method (A) is based on the ratio difference method; Method (B) is ratio subtraction with constant multiplication; while Method (C) is a second derivative method and Method (D) is a partial least-squares method. RESULTS: The calibration curves for dapagliflozin and saxagliptin were linear within the concentration range of 2.50-50.0 µg/mL and 5.0-60.0 µg/mL, respectively. The specificity of the proposed methods was studied by analyzing different laboratory-prepared mixtures and their combined pharmaceutical dosage form. According to the International Council for Harmonisation guidelines, the three proposed methods were validated regarding the accuracy, precision, and specificity. Method (D), partial least-squares, was employed for the determination of the same mixture over a wavelength range of 205-300 nm. A statistical comparison was performed between the results of the proposed methods and those of a reported spectrophotometric method and no statistically significant difference was detected at 95% confidence limit regarding both precision and accuracy. CONCLUSION: Four accurate, specific, and precise UV-spectrophotometric methods for dapagliflozin and saxagliptin testing and estimation were successfully utilized and validated. HIGHLIGHTS: The examined methods are simple and do not involve sophisticated and expensive instruments. They could be effectively employed in quality control laboratories for routine examination of the investigated drugs in their pure powdered or combined pharmaceutical formulations.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents , Spectrophotometry/methods , Powders
12.
Talanta ; 254: 124151, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36463800

ABSTRACT

Misuse of illicit drugs is a serious problem that became the primary concern for many authorities worldwide. Point-of-care (POC) diagnostic tools can provide accurate and fast screening information that helps to detect illicit drugs in a short time. A portable, disposable and reproducible core-shell molecularly imprinted polymer (MIP) screen-printed sensor was synthesized as a POC analyzer for the assay of the date rape drug "ketamine hydrochloride" in different matrices. Firstly, the screen-printed electrode substrate was modified electrochemically with polyaniline (PANI) as an ion-to-electron transducer interlayer to improve the potential signal stability. Secondly, core-shell MIP was prepared, the core consisting of silica nanoparticles prepared by Stober's method, while the MIP shell was synthesized onto silica nanoparticles surface by copolymerizing methacrylic acid functional monomer and the crossing agent; ethylene glycol dimethacrylate in the presence of ketamine as a template molecule. Finally, the core-shell MIP was incorporated into the PVC membrane as an ionophore and drop-casted over PANI modified screen-printed carbon electrode. The imprinting process and the morphology of MIP were examined using scanning electron microscopy, Fourier-transform infrared and X-ray photoelectron spectroscopic methods. The sensor exhibited a short response time within 3-5 s in a pH range (2.0-5.0). The potential profile indicated a linear relationship in a dynamic concentration range of 1.0 × 10-6 M to 1.0 × 10-2 M with a slope of 54.7 mV/decade. The sensor was employed to determine ketamine in biological matrices and beverages.


Subject(s)
Ketamine , Molecular Imprinting , Rape , Molecularly Imprinted Polymers , Polymers/chemistry , Electrochemical Techniques/methods , Point-of-Care Systems , Silicon Dioxide/chemistry , Molecular Imprinting/methods , Electrodes , Limit of Detection
13.
ACS Omega ; 7(47): 43139-43146, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467928

ABSTRACT

Nitroanilines are environmentally toxic pollutants which are released into aquatic systems due to uncontrolled industrialization. Therefore, it is crucial to convert these hazardous nitroanilines into a harmless or beneficial counterpart. In this context, we present the chemical reduction of 4-nitroaniline (4-NA) by NaBH4 utilizing Prussian blue analogue (PBA) as nanocatalyst. PBAs can serve as inexpensive, eco-friendly, and easily fabricated nanocatalysts. PBA cobalt tetracyanonickelate hexacyanochromate (CoTCNi/HCCr) was stoichiometrically prepared by a facile chemical coprecipitation. Chemical, phase, composition, and molecular interactions were investigated by XRD, EDX, XPS, and Raman spectroscopy. Additionally, SEM and TEM micrographs were utilized to visualize the microstructure of the nanomaterial. The findings revealed the synthesized PBA of the cubic phase and their particles in nanosheets. The band gap was estimated from the optical absorption within the UV-vis region to be 3.70 and 4.05 eV. The catalytic performance of PBA for the reduction of 4-NA was monitored by UV-vis spectroscopy. The total reduction time of 4-NA by PBA was achieved within 270 s, and the computed rate constant (k) was 0.0103 s-1. The synthesized PBA nanoparticles have the potential to be used as efficient nanocatalysts for the reduction of different hazardous nitroaromatics.

14.
Anal Chim Acta ; 1192: 339350, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35057968

ABSTRACT

Point of care (POC), also identified as on-site testing, has evolved as a rapid and accurate technique for drug of abuse screening and analysis. The aim of this work is to detect tropicamide (TPC) abuse in biological fluids; we selected rat plasma as example. We developed a disposal miniaturized, portable, green, and budget-friendly POC solid-state electrochemical sensor based on potentiometric transduction. To attain that, an innovative microfabricated electrode modified with conducting polymer poly(3-octylthiophene) (POT) has been placed on sensitized printed circuit board (PCB). A two-stage optimization process was implemented to develop the fabricated electrode. The first stage of the optimization process depends on screening various ionophores in order to enhance the sensor selectivity towards tropicamide. Copper nanoparticles exhibited the highest selectivity towards TPC. The second stage was utilizing a polymer as an ion-to-electron transducer layer between the copper nanoparticles impregnated ion sensing membrane and the microfabricated solid-contact ion-selective electrode. This polymer was added to boost the stability of the potential drift (1.2 mV/h) due to the hydrophobic behavior of the POT, which precludes the formation of an aqueous layer at the Cu electrode/polymeric membrane interface and improve the limit of detection (1.1 × 10-8 M). Nernstian potentiometric response was accomplished for TPC with a slope of 58.46 ± 0.43 mV/decade and E0 ∼ 189.39 ± 2.12 over the concentration range 1.0 × 10-7 to 1.0 × 10-2 M. The suggested sensor's intrinsic figure of merits include a quick response time (13 ± 2 s) and long life time (45 days). The proposed sensor has been successfully employed in the selective determination of TPC in pharmaceutical formulations, and biological fluids. When the results were compared to those of the official approach, there was no statistically significant difference. The Eco-Scale tool assessed and measured the greenness profile of the established method.


Subject(s)
Nanoparticles , Tropicamide , Animals , Ion-Selective Electrodes , Point-of-Care Testing , Potentiometry , Rats
15.
ACS Omega ; 6(46): 31282-31291, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34841172

ABSTRACT

Cyclocreatine and its water-soluble derivative, cyclocreatine phosphate (CCrP), are potent cardioprotective drugs. Based on recent animal studies, CCrP, FDA-awarded Orphan Drug Designation, has a promising role in increasing the success rate of patients undergoing heart transplantation surgery by preserving donor hearts during transportation and improving the recovery of transplanted hearts in recipient patients. In addition, CCrP is under investigation as a promising treatment for creatine transporter deficiency, an X-linked inborn error resulting in a poor quality of life for both the patients and the caregiver. A newly designed molecularly imprinted polymer (MIP) material was fabricated by the anodic electropolymerization of o-phenylenediamine on screen-printed carbon electrodes and was successfully applied as an impedimetric sensor for CCrP determination to dramatically reduce the analysis time during both the clinical trial phases and drug development process. To enhance the overall performance of the proposed sensor, studies were performed to optimize the electropolymerization conditions, incubation time, and pH of the background electrolyte. Scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were used to characterize the behavior of the developed ultrathin MIP membrane. The CCrP-imprinted polymer has a high recognition affinity for the template molecule because of the formation of 3D complementary cavities within the polymer. The developed MIP impedimetric sensor had good linearity, repeatability, reproducibility, and stability within the linear concentration range of 1 × 10-9 to 1 × 10-7 mol/L, with a low limit of detection down to 2.47 × 10-10 mol/L. To verify the applicability of the proposed sensor, it was used to quantify CCrP in spiked plasma samples.

16.
Environ Sci Process Impacts ; 23(3): 457-466, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33555283

ABSTRACT

The environmental emergence of unexpected contaminants has gained the attention of the scientific community. A broad spectrum antimicrobial compound named triclosan (TCS) was detected in the environment as an emerging contaminant. Owing to its inherent toxicity, we have proposed eco-friendly potentiometric liquid state sensors to be used for monitoring and quantifying TCS in environmental water samples. The proposed sensors have been optimized by modifying the inner filling solution using hydrophilic 2-hydroxypropyl ß-cyclodextrin as a complexing agent to be capable of minimizing the trans-membrane ion flux and hence improving the selective and sensitive determination of TCS in environmental matrices with low LOD values. The obtained linear response of the optimized sensor was (1 × 10-9 to 1 × 10-5 M) compared to the control sensor (1 × 10-8 to 1 × 10-4 M). The obtained limit of detection (LOD) value was found to be 9.86 × 10-10 M compared to 9.78 × 10-9 M of the control sensor. The modification of the inner filling solution of the sensor with 2-hydroxypropyl ß-cyclodextrin improves not only its sensitivity but also its response time to be only 5 seconds. The electrical performance of the proposed sensor was evaluated following IUPAC recommendations. Both the pH and temperature effects were studied and optimized. Two different greenness assessment tools, Analytical Eco-scale and Green Procedure Index, were adopted upon the evaluation of the proposed sensors' greenness.


Subject(s)
Cyclodextrins , Triclosan , 2-Hydroxypropyl-beta-cyclodextrin , Limit of Detection , Water
17.
RSC Adv ; 11(31): 19196-19202, 2021 May 24.
Article in English | MEDLINE | ID: mdl-35478607

ABSTRACT

Thin layer chromatography (TLC) is a powerful and simple technique for screening and quantifying low quality and counterfeit pharmaceutical products. The detection methods used to detect and quantify separate analytes in TLC ranges from the densitometric method to mass spectrometric or Raman spectroscopic methods. This work describes the development and optimization of a simple and sensitive TLC method utilizing a smartphone CCD camera for verification of both identity and quantity of antibiotics in dosage form, namely ofloxacin and ornidazole. Mixtures of ofloxacin and ornidazole were chromatographed on a silica gel 60 F254 plate as a stationary phase. The optimized mobile phase is n-butanol : methanol : ammonia (8 : 1 : 1.5 by volume). Iodine vapor has been used as a "universal stain" to visualize the spots on the TLC plates in order to obtain a visual image using the smartphone camera and a desk lamp as an illumination source, thus eliminating the need for a UV illumination source. The recorded images were processed to calculate the R f values (R f values for ofloxacin and ornidazole were 0.12 and 0.76, respectively) which provide identity of the drugs while spot intensity was calculated using a commercially available smartphone app and employed for quantitative analysis of the antibiotics and "acetaminophen" as an example of a counterfeit substance. The smartphone TLC method yielded a linearity of ofloxacin and ornidazole in the range of 12.5-62.5 µg/band and 500-1000 µg/band, respectively. The limit of detection was found to be 1.6 µg/spot for ofloxacin and 97.8 µg/spot for ornidazole. The proposed method was compared with the bench top densitometric method for verification using a Camag TLC Scanner 3, the spot areas were scanned at 320 nm. The R f value of ofloxacin and ornidazole was calculated to be 0.12 and 0.76, respectively. The densitometric method yielded a linearity of ofloxacin and ornidazole in the range of 5-40 µg/band and 5-50 µg/band, respectively. The limit of detection was found to be 0.8 µg/spot for ofloxacin and 1.1 µg/spot for ornidazole. The proposed method has been successfully applied for the determination of ofloxacin and ornidazole present in more than one pharmaceutical dosage form and was comparable to the densitometric method.

18.
Talanta ; 221: 121409, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076056

ABSTRACT

Choline (Ch+), is a vitamin-like essential water-soluble organic micronutrient. The US-FDA requires that infant formula not made from cow's milk must be supplemented with Ch+. Direct determination of Ch+ in milk powders and infant formulas is a challenging task due to the lack of a detectable chromophore, its existence in free and complexed forms as well as the presence of multi-analytes in these complex matrices. Here, an enzyme-free potentiometric ion selective electrode (ISE) with high selectivity for Ch+, a linear range from 0.03 µM up to 1 mM, a 0.061 µM detection limit (LOD) and a typical response time less than 5 and no greater than 60 s is developed for monitoring of Ch+ in infant formula and milk powders. To achieve these ISE parameters we relied on the ability of calixarenes and its derivatives to form host-guest complexes with the positively charged quaternary ammonium moiety of Ch+. We employed a lipophilic (membrane-compatible) calixarene as an ionophore in the sensing membrane phase to provide a molecular receptor for Ch+ capable of selective binding; while utilizing, hydrophilic (water-soluble) p-sulfonated calixarene as a buffering agent to optimize the inner filling solution to reduce transmembrane Ch+ fluxes. All the calixarene structures and their complexes with Ch+ were optimized at the density functional theory (DFT) level and the Gibbs free energies for the inclusion of Ch+ into the calixarenes were calculated. The prepared sensor was shown to selectively respond only to Ch+ in the presence of all other interferents in the tested matrices with results that are not statistically significantly different for either accuracy or precision relative to the much more laborious official AOAC 1999 coupled enzymatic-spectrophotometric method. The proposed method is highly selective, non-enzymatic, requires no derivatization or incubation steps, offers a fast response time, and has the potential of portability for in situ analysis, while being relatively cost effective and non-laborious.


Subject(s)
Infant Formula , Milk , Animals , Cattle , Choline/analysis , Dietary Supplements , Female , Humans , Infant , Milk/chemistry , Powders
19.
Anal Methods ; 12(22): 2903-2913, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32930213

ABSTRACT

In the pharmaceutical industry, finding cost-effective and real-time analyzers that provide valid data is a good aim. The purpose of this work was to propose a link between the pharmaceutical industry and the recent innovations in solid-contact ion-selective electrodes (SC-ISEs) for the utilization of these electrodes as real-time analyzers to evaluate the concentration of tetrahydrozoline HCl in different matrices. The backbone of these new potentiometric sensors is the conjunction of calix[6]arene and (2-hydroxypropyl)-ß-cyclodextrin as molecular recognition elements and a network of multi-walled carbon nanotubes as a solid transducer material between an ionophore-doped PVC membrane and microfabricated Cu electrodes. The proposed sensors were optimized to determine tetrahydrozoline, and their performances were assessed according to the IUPAC recommendations. The proposed solid-contact sensors were compared with liquid contact sensors, and the former sensors were found to be better than the latter sensors in terms of durability, handling, and easier adaptation to industry with comparable sensitivity. The measurements were implemented using phosphate buffer (pH: 6). The best obtained linearity range was 1 × 10-2 to 1 × 10-7 M, and the best LOD was 1 × 10-8 M. The sensors with the best performance were successfully applied to determine tetrahydrozoline in a pharmaceutical eye preparation and rabbit tears. The obtained results were statistically compared to those obtained by the official method of analysis, and no significant difference was obtained. The eco-score of the method was assessed using the eco-scale tool and also compared with that of the official method. The proposed approach was validated according to the International Council for Harmonisation (ICH) guidelines.


Subject(s)
Nanotubes, Carbon , Animals , Aqueous Humor , Drug Compounding , Imidazoles , Potentiometry , Rabbits
20.
Mikrochim Acta ; 187(9): 491, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32767121

ABSTRACT

The major objective of this work was to develop a portable, disposable, cost-effective, and reliable POC solid-state electrochemical sensor based on potentiometric transduction to detect benzodiazepine abuse, mainly diazepam (DZP), in biological fluids. To achieve that, microfabricated Cu electrodes on a printed circuit board modified with the conducting polymer poly(3-octylthiophene) (POT) have been employed as a substrate. This polymer was introduced to enhance the stability of the potential drift (0.9 mV/h) and improve the limit of detection (0.126 nmol mL-1). Nernstian potentiometric response was achieved for DZP over the concentration range 1.0 × 10-2 to 5.0 × 10-7 mol L-1 with a slope of 55.0 ± 0.4 mV/decade and E0 ~ 478.9 ± 0.9. Intrinsic merits of the proposed sensor include rapid response time (11 ± 2 s) and long life time (3 months). In order to enhance the selectivity of the potentiometric sensor towards the target drug and minimize any false positive results, calix[4]arene (CX4) was impregnated as an ionophore within the PVC plastic ion-sensing membrane. The performance of the POC sensors was assessed using electrochemical methods of analysis and electrochemical impedance spectroscopy as a surface characterization tool. The studied sensors were applied to the potentiometric determination of DZP in different biological fluids (plasma, urine, saliva, and human milk) in the presence of its metabolite with an average recovery of 100.9 ± 1.3%, 99.4 ± 1.0%, 101.8 ± 1.2%, and 99.0 ± 2.0%, respectively. Graphical abstract.


Subject(s)
Copper/chemistry , Diazepam/analysis , Substance-Related Disorders/diagnosis , Diazepam/blood , Diazepam/urine , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Food Contamination/analysis , Humans , Limit of Detection , Microtechnology , Milk, Human/chemistry , Point-of-Care Testing , Polymers/chemistry , Reproducibility of Results , Saliva/chemistry , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...