Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
BMC Vet Res ; 20(1): 303, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982442

ABSTRACT

BACKGROUND: The inappropriate use of pesticides including fungicides creates severe biological hazards that can endanger fish health and impede sustainable aquaculture. OBJECTIVE: This study investigated the negative impacts of metiram (MET), a fungicide on the health status of Nile tilapia (Oreochromis niloticus) for a 96-hour duration as an acute exposure in a static renewal system. METHODS: Three hundred fish (average body weight: 37.50 ± 0.22 g) were assigned into six groups (50 fish/group) with five replicates (10 fish/replicate). Fish were exposed to various six concentrations (0, 1.5, 3, 4.5, 6, and 7.5 mg/L) of MET as a water exposure to for 96-hour without water exchange. The fish's behavior, clinical signs, and mortalities were documented every day of the exposure period. Additionally, MET's impact on blood profile, stress biomarkers, hepato-renal functions, immune-antioxidant status, and brain biomarker were closely monitored. RESULTS: The lethal concentration (LC50) of MET estimated using Finney's probit technique was 3.77 mg/L. The fish's behavior was severely impacted by acute MET exposure, as clear by an increase in surfacing, loss of equilibrium, unusual swimming, laterality, abnormal movement, and a decline in aggressive behaviors. The survivability and hematological indices (white and red blood cell count, differential white blood cell count, hematocrit value, and hemoglobin) were significantly reduced in a concentration-dependent manner following MET exposure. Acute exposure to MET (1.5-7.5 mg/L) incrementally increased stress biomarkers (nor-epinephrine, cortisol, and glucose), lipid peroxides (malondialdehyde), and brain oxidative DNA damage biomarker (8-hydroxy-2-deoxyguanosine). A hepato-renal dysfunction by MET exposure (4.5-7.5 mg/L) was evidenced by the significant increase in the alanine and aspartate aminotransferases and creatinine values. Moreover, a substantial decline in the immune parameters (lysozyme, complement 3, serum bactericidal activity, and antiprotease activity) and antioxidant variables (total antioxidant capacity, superoxide dismutase, and glutathione peroxidase) resulted from acute MET exposure. CONCLUSION: According to these findings, the 96-hour LC50 of MET in Nile tilapia was 3.77 mg/L. MET exposure triggered toxicity in Nile tilapia, as seen by alterations in fish neuro-behaviors, immune-antioxidant status, hepato-renal functioning, and signifying physiological disturbances. This study emphasizes the potential ecological dangers provoked by MET as an environmental contaminant to aquatic systems. However, the long-term MET exposure is still needed to be investigated.


Subject(s)
Cichlids , Fungicides, Industrial , Animals , Cichlids/metabolism , Cichlids/physiology , Fungicides, Industrial/toxicity , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Biomarkers/blood , Lethal Dose 50 , Brain/metabolism , Brain/drug effects
3.
Pharmaceutics ; 16(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39065652

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major complication of type 2 diabetes mellitus (T2DM) that leads to significant morbidity and mortality. The alteration in the signaling mechanism in diabetes leading to cardiomyopathy remains unclear. The purpose of this study is to investigate the role of tauopathy in myocardial dysfunction observed in T2DM. In that regard, diabetic Sprague Dawley rats were treated with intraperitoneal injections of lithium chloride (LiCl), inhibiting tau phosphorylation. Cardiac function was evaluated, and molecular markers of myocardial fibrosis and the TGF-ß signaling were analyzed. T2DM rats exhibited a decline in ejection fraction and fractional shortening that revealed cardiac function abnormalities and increased myocardial fibrosis. These changes were associated with tau hyperphosphorylation. Treating diabetic rats with LiCl attenuated cardiac fibrosis and improved myocardial function. Inhibition of GSK-3ß leads to the suppression of tau phosphorylation, which is associated with a decrease in TGF-ß expression and regulation of the pro-inflammatory markers, suggesting that tau hyperphosphorylation is parallelly associated with fibrosis and inflammation in the diabetic heart. Our findings provide evidence of a possible role of tau hyperphosphorylation in the pathogenesis of DCM through the activation of TGF-ß and by inducing inflammation. Targeting the inhibition of tau phosphorylation may offer novel therapeutic approaches to reduce DCM burden in T2DM patients.

4.
Foods ; 13(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063348

ABSTRACT

Cumin seeds are frequently utilized in herbal infusions and as flavoring agents in home cuisine. Nevertheless, studies have demonstrated that spices are frequently contaminated with pathogenic bacteria, including bacterial spores. The aim of this study was to assess the effectiveness of a new decontamination method called "Intensification of Vaporization by Decompression to the Vacuum" (IVDV) on intentionally contaminated Cuminum cyminum seeds. The study also examined the impact of this treatment on the color and oil profile of the treated samples. The untreated samples were inoculated with Escherichia coli (ATCC 25922) and Salmonella Typhimurium (ATCC 14028) and then subjected to IVDV treatment. Response surface methodology was employed to obtain safe, high-quality cumin seeds presenting a balance between microbial load, color, and oil profile. The optimal IVDV conditions were achieved at a pressure of 3.5 bar and a time of 133.45 s, resulting in typical 4 log reductions observed with 99.99% of Escherichia coli and Salmonella Typhimurium inactivation. The treated spices presented a mild color modification compared to the untreated ones, manifested by a darker shade (decreased L* value), reduced greenness (increased a* value), and heightened yellowness (increased b* value). The GC-MS analysis detected the existence of seven compounds in the treated cumin, with cuminaldehyde being the primary compound (83.79%). Furthermore, the use of IVDV treatment resulted in an increase in the total content of essential oils in some samples, whereby six monoterpenes were identified in the untreated sample compared to seven monoterpenes in IVDV-treated samples. This innovative technology demonstrated high efficacy in decontaminating C. cyminum seeds, improving the extractability of the essential oils while only slightly affecting the color.

5.
Front Nutr ; 11: 1405708, 2024.
Article in English | MEDLINE | ID: mdl-38946786

ABSTRACT

The study highlighted the potential of sesame seed coat (SSC), typically discarded during sesame paste processing, as a valuable resource for valorization through extracting bioactive compounds. It examined the phenolic composition and antioxidant activity of SSC, and evaluated its antibacterial properties against foodborne pathogens such as Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. Additionally, SSC underwent nanoemulsion coating, analyzed using dynamic light scattering and scanning electron microscopy, to enhance its application as a natural preservative. The research specifically focused on incorporating SSC nanoemulsion into milk to determine its effectiveness as a preservative. SSC demonstrated considerable antioxidant activity and phenolic content, with catechin identified as the predominant polyphenol. GC-MS analysis revealed seven major compounds, led by oleic acid. Notably, SSC effectively inhibited L. monocytogenes in broth at 100 mg/ml. The application of SSC and its nanoemulsion resulted in changes to bacterial morphology and a significant reduction in bacterial counts in milk, highlighting its potential as an effective natural antibacterial agent. The findings of this study highlight the potential use of SSC as a valuable by-product in the food industry, with significant implications for food preservation.

6.
Int J Impot Res ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890514

ABSTRACT

When feasible from an oncologic standpoint, partial penectomy (PP) is often preferred to total penectomy (TP) for penile cancer treatment, for the preservation of functional urinary outcomes. However, to date, there has not been a direct comparison of perioperative outcomes between PP and TP. Comparing treatments for penile cancer has proven difficult due to the rarity of penile cancer in the United States. We aimed to report differences in pre-operative risk factors, intra-operative outcomes, and postoperative outcomes between TP and PP for penile cancer. Using the National Surgical Quality Improvement Program database, we conducted a retrospective cohort review of penile cancer patients enlisted in the database between the years 2006-2016 using the International Classification of Diseases clinical modification 9th revision codes. A total of 260 patients, 67 TP and 193 PP patients, were included. PP patients were less likely to be transferred patients (p = 0.002), diabetic (p = 0.026), and were more likely to have preoperative laboratory values within normal limits. PP patients also had shorter lengths of stay in the hospital (p < 0.001) and operating time (p < 0.001). Significant differences were also found for inpatient stay (p < 0.001), 30-day post-surgery complications (p < 0.001), deep incisional surgical site infection (SSI) (p = 0.017), wound disruption (p = 0.017), intraoperative or postoperative transfusion (p = 0.029), and sepsis (p < 0.005). Finally, PP patients required fewer concurrent surgical procedures (p < 0.001). Demographic differences between PP and TP patients may reflect patients presenting with more advanced oncologic disease. PP is associated with fewer postoperative complications, shorter surgeries, shorter hospital stays, fewer concurrent surgical procedures, and comorbid conditions compared to TP. A gap remains in the reported data pertaining to postoperative sexual function and erectile outcomes for PP at a national level.

7.
Foods ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38890913

ABSTRACT

This study focused on testing the antibacterial and antifungal activity of Origanum syriacum (O. syriacum) and Cimbopogon winterianus (C. winterianus) extracts and their essential oils (EOs). The bacteria were isolated from urine samples and identified by a VITEK assay, and the fungi were isolated from spoiled food samples and further identified by MALDI-TOF. The susceptibility of the microbial isolates was assessed by determining the bacteriostatic and bactericidal/fungicidal effects by the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) broth microdilution assay and time-kill test. The antibiofilm activities were assessed by the antibiofilm screening assays. The bacterial isolates included three Gram-negative isolates (Escherichia coli, Klebsiella pneumonia, and Citrobacter freundii) and two Gram-positive isolates (Staphylococcus aureus and Streptococcus intermedius). The fungal isolates included Candida albicans and Aspergillus niger. The O. syriacum and C. winterianus extracts exhibited bacteriostatic and fungistatic activities (MIC 1.25-2.5 mg/mL for the bacterial isolates and 2.5-5 mg/mL for the fungal isolates). However, their EOs exhibited bactericidal (MBC 5-20%) and fungicidal (MFC 1.25-10%) activities, meaning that the EOs had a better antimicrobial potential than the extracts. The antibiofilm activities of the mentioned extracts and their EOs were relatively weak. The O. syriacum extract inhibited S. aureus, S. intermedius, and K. pneumonia biofilms at a concentration of 0.3125 mg/mL and C. albicans and A. niger biofilms at 0.625 mg/mL. No antibiofilm activity was recorded for C. winterianus extract. In addition, the packaging of grapes with C. winterianus extract preserved them for about 40 days. The results reflect the significant antimicrobial activity of O. syriacum and C. winterianus extracts and their EOs, thus suggesting their potential in food packaging and preservation.

8.
Lancet Microbe ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38909617

ABSTRACT

BACKGROUND: Microbiota alterations are common in patients hospitalised for severe infections, and preclinical models have shown that anaerobic butyrate-producing gut bacteria protect against systemic infections. However, the relationship between microbiota disruptions and increased susceptibility to severe infections in humans remains unclear. We investigated the relationship between gut microbiota and the risk of future infection-related hospitalisation in two large population-based cohorts. METHODS: In this observational microbiome study, gut microbiota were characterised using 16S rRNA gene sequencing in independent population-based cohorts from the Netherlands (HELIUS study; derivation cohort) and Finland (FINRISK 2002 study; validation cohort). HELIUS was conducted in Amsterdam, Netherlands, and included adults (aged 18-70 years at inclusion) who were randomly sampled from the municipality register of Amsterdam. FINRISK 2002 was conducted in six regions in Finland and is a population survey that included a random sample of adults (aged 25-74 years). In both cohorts, participants completed questionnaires, underwent a physical examination, and provided a faecal sample at inclusion (Jan 3, 2013, to Nov 27, 2015, for HELIUS participants and Jan 21 to April 19, 2002, for FINRISK participants. For inclusion in our study, a faecal sample needed to be provided and successfully sequenced, and national registry data needed to be available. Primary predictor variables were microbiota composition, diversity, and relative abundance of butyrate-producing bacteria. Our primary outcome was hospitalisation or mortality due to any infectious disease during 5-7-year follow-up after faecal sample collection, based on national registry data. We examined associations between microbiota and infection risk using microbial ecology and Cox proportional hazards. FINDINGS: We profiled gut microbiota from 10 699 participants (4248 [39·7%] from the derivation cohort and 6451 [60·3%] from the validation cohort). 602 (5·6%) participants (152 [3·6%] from the derivation cohort; 450 [7·0%] from the validation cohort) were hospitalised or died due to infections during follow-up. Gut microbiota composition of these participants differed from those without hospitalisation for infections (derivation p=0·041; validation p=0·0002). Specifically, higher relative abundance of butyrate-producing bacteria was associated with a reduced risk of hospitalisation for infections (derivation cohort cause-specific hazard ratio 0·75 [95% CI 0·60-0·94] per 10% increase in butyrate producers, p=0·013; validation cohort 0·86 [0·77-0·96] per 10% increase, p=0·0077). These associations remained unchanged following adjustment for demographics, lifestyle, antibiotic exposure, and comorbidities. INTERPRETATION: Gut microbiota composition, specifically colonisation with butyrate-producing bacteria, was associated with protection against hospitalisation for infectious diseases in the general population across two independent European cohorts. Further studies should investigate whether modulation of the microbiome can reduce the risk of severe infections. FUNDING: Amsterdam UMC, Porticus, National Institutes of Health, Netherlands Organisation for Health Research and Development (ZonMw), and Leducq Foundation.

9.
Article in English | MEDLINE | ID: mdl-38830512

ABSTRACT

BACKGROUND: Months after infection with severe acute respiratory syndrome coronavirus 2, at least 10% of patients still experience complaints. Long-COVID (coronavirus disease 2019) is a heterogeneous disease, and clustering efforts revealed multiple phenotypes on a clinical level. However, the molecular pathways underlying long-COVID phenotypes are still poorly understood. OBJECTIVES: We sought to cluster patients according to their blood transcriptomes and uncover the pathways underlying their disease. METHODS: Blood was collected from 77 patients with long-COVID from the Precision Medicine for more Oxygen (P4O2) COVID-19 study. Unsupervised hierarchical clustering was performed on the whole blood transcriptome. These clusters were analyzed for differences in clinical features, pulmonary function tests, and gene ontology term enrichment. RESULTS: Clustering revealed 2 distinct clusters on a transcriptome level. Compared with cluster 2 (n = 65), patients in cluster 1 (n = 12) showed a higher rate of preexisting cardiovascular disease (58% vs 22%), higher prevalence of gastrointestinal symptoms (58% vs 29%), shorter hospital duration during severe acute respiratory syndrome coronavirus 2 infection (median, 3 vs 8 days), lower FEV1/forced vital capacity (72% vs 81%), and lower diffusion capacity of the lung for carbon monoxide (68% vs 85% predicted). Gene ontology term enrichment analysis revealed upregulation of genes involved in the antiviral innate immune response in cluster 1, whereas genes involved with the adaptive immune response were upregulated in cluster 2. CONCLUSIONS: This study provides a start in uncovering the pathophysiological mechanisms underlying long-COVID. Further research is required to unravel why the immune response is different in these clusters, and to identify potential therapeutic targets to create an optimized treatment or monitoring strategy for the individual long-COVID patient.

10.
Sci Rep ; 14(1): 10548, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719844

ABSTRACT

This study not only provides an innovative technique for producing rigid polyurethane foam (RPUF) composites, but it also offers a way to reuse metallurgical solid waste. Rigid polyurethane (RPUF) composite samples have been prepared with different proportions of iron slag as additives, with a range of 0-25% mass by weight. The process of grinding iron slag microparticles into iron slag nanoparticles powder was accomplished with the use of a high-energy ball mill. The synthesized samples have been characterized using Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. Then, their radiation shielding properties were measured by using A hyper-pure germanium detector using point sources 241Am, 133 BA, 152 EU, 137Cs, and 60Co, with an energy range of 0.059-1.408 MeV. Then using Fluka simulation code to validate the results in the energy range of photon energies of 0.0001-100 MeV. The linear attenuation coefficient, mass attenuation coefficient, mean free path, half-value layer and tenth-value layer, were calculated to determine the radiation shielding characteristics of the composite samples. The calculated values are in good agreement with the calculated values. The results of this study showed that the gamma-ray and neutron attenuation parameters of the studied polyurethane composite samples have improved. Moreover, the effect of iron slag not only increases the gamma-ray attenuation shielding properties but also enhances compressive strength and the thermal stability. Which encourages us to use polyurethane iron-slag composite foam in sandwich panel manufacturing as walls to provide protection from radiation and also heat insulation.

11.
World J Pediatr Congenit Heart Surg ; : 21501351241237091, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715391

ABSTRACT

Background: Pulmonary autograft failure remains a cause of reoperation following the Ross procedure. The aim of this study is to describe our evolving approach to autograft reoperations. Methods: Retrospective study of all patients who underwent a pulmonary autograft reoperation following a Ross procedure between June 1997 and July 2022. Results: Two-hundred and thirty-five Ross procedures were performed. Thirty-six patients (15%) plus one referral underwent an autograft reoperation at a median of 7.8 years (IQR 4.6-13.6). The main indication was: neoaortic root dilatation associated with mild/moderate (n = 12) or severe (n = 8) aortic regurgitation; isolated severe aortic regurgitation (n = 6); infective endocarditis (IE) (n = 8); and aortic root pseudoaneurysm with no history of IE (n = 3). The autograft was spared in 29 cases (78%): 9 patients (24%) underwent aortic valve repair or aortic root remodeling, 15 patients (40%) aortic root reimplantation, 5 patients neoaortic root stabilization with a Personalized External Aortic Root Support (PEARS) sleeve. There were no in-hospital deaths. At a median follow up of 37 months (IQR 8-105), all patients were alive, 30 (81%) were asymptomatic. Eight patients (22%) required nine further reoperations. Estimated freedom from further reoperation was 90%, 72%, and 72% at 12-, 36-, and 60-months. Conclusions: Autograft reoperations following the Ross procedure can be safely performed and do not affect overall survival in the early and mid-term. Valve-sparing autograft replacement is technically feasible but remains at risk of further interventions. Alternative strategies, such as the PEARS sleeve, are becoming increasingly available but requires validation in the long term.

12.
Environ Sci Pollut Res Int ; 31(24): 35631-35650, 2024 May.
Article in English | MEDLINE | ID: mdl-38739338

ABSTRACT

Magnetic nanoparticles have emerged as a promising tool for wastewater treatment due to their unique properties. In this regard, Co0.33Mg0.33Ni0.33SmxFe2-xO4 (0.00 ≤ x ≤ 0.08) nanoparticles were prepared to examine their magnetic separation efficiency (MSE), photocatalytic, antibacterial, and antibiofilm performances. Pure nanoparticles, having the highest saturation magnetization (Ms = 31.87 emu/g), exhibit the highest MSE, where 95.6% of nanoparticles were separated after 20 min of applying a magnetic field of 150 mT. The catalytic performance of the prepared samples is examined by the photodegradation of rhodamine B (RhB) dye exposed to direct sunlight radiation. Improved photocatalytic activity is exhibited by Co0.33Mg0.33Ni0.33Sm0.04Fe1.96O4 nanoparticles, labeled as Sm0.04, where the rate of the degradation reaction is enhanced by 4.1 times compared to pure nanoparticles. Rising the pH and reaction temperature improves the rate of the photodegradation reaction of RhB. The incorporation of 15 wt% reduced graphene oxide (rGO) with Sm0.04 enhanced the rate of the reaction by 1.7 and 2.4 times compared with pure Sm0.04 sample and rGO, respectively. The antibacterial and antibiofilm activities against Escherichia coli, Leclercia adecarboxylata, Staphylococcus aureus, and Enterococcus faecium are assessed by the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) broth microdilution, the agar well diffusion, the time-kill assays, the biofilm formation, and destruction assays. The bacteria used in these assessments are isolated from wastewater. The nanoparticles exhibit a bacteriostatic activity, with a better effect against the Gram-positive isolates. Co0.33Mg0.33Ni0.33SmxFe2O4 (x = 0.00) nanoparticles have the best effect. The effect is exerted after 2-3 h of incubation. Gram-positive biofilms are more sensitive to nanoparticles.


Subject(s)
Anti-Bacterial Agents , Sunlight , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Photolysis , Rhodamines/chemistry , Biofilms/drug effects
13.
World J Pediatr ; 20(7): 682-691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664324

ABSTRACT

BACKGROUND: Pediatric post coronavirus disease 2019 (COVID-19) condition (PPCC) is a heterogeneous syndrome, which can significantly affect the daily lives of children. This study aimed to identify clinically meaningful phenotypes in children with PPCC, to better characterize and treat this condition. METHODS: Participants were children with physician-diagnosed PPCC, referred to the academic hospital Amsterdam UMC in the Netherlands between November 2021 and March 2023. Demographic factors and information on post-COVID symptoms, comorbidities, and impact on daily life were collected. Clinical clusters were identified using an unsupervised and unbiased approach for mixed data types. RESULTS: Analysis of 111 patients (aged 3-18 years) revealed three distinct clusters within PPCC. Cluster 1 (n = 62, median age = 15 years) predominantly consisted of girls (74.2%). These patients suffered relatively more from exercise intolerance, dyspnea, and smell disorders. Cluster 2 (n = 33, median age = 13 years) contained patients with an even gender distribution (51.5% girls). They suffered from relatively more sleep problems, memory loss, gastrointestinal symptoms, and arthralgia. Cluster 3 (n = 16, median age = 11 years) had a higher proportion of boys (75.0%), suffered relatively more from fever, had significantly fewer symptoms (median of 5 symptoms compared to 8 and 10 for clusters 1 and 2 respectively), and experienced a lower impact on daily life. CONCLUSIONS: This study identified three distinct clinical PPCC phenotypes, with variations in sex, age, symptom patterns, and impact on daily life. These findings highlight the need for further research to understand the potentially diverse underlying mechanisms contributing to post-COVID symptoms in children.


Subject(s)
COVID-19 , Phenotype , Humans , Child , Female , COVID-19/epidemiology , Male , Adolescent , Child, Preschool , Netherlands/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
14.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561720

ABSTRACT

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Subject(s)
Cichlids , Fish Diseases , Polyethylene Glycols , Polyethyleneimine , Pseudomonas putida , Titanium , Animals , Antioxidants , Nanogels , Diet , Dietary Supplements , Animal Feed/analysis , Fish Diseases/drug therapy , Fish Diseases/microbiology
15.
Behav Neurol ; 2024: 4504858, 2024.
Article in English | MEDLINE | ID: mdl-38566972

ABSTRACT

Obsessive-compulsive disorder (OCD) is a disabling disease characterized by distressing obsessions and repetitive compulsions. The etiology of OCD is poorly known, and mouse modeling allows to clarify the genetic and neurochemical basis of this disorder and to investigate potential treatments. This study evaluates the impact of the 5-HT1B agonist RU24969 on the induction of OCD-like behaviours in female BALB/c mice (n = 30), distributed across five groups receiving varying doses of RU24969. Behavioural assessments, including marble test, tail suspension test, sucrose preference test, forced swim test, and nestlet shredding test, were conducted. Gene expression and protein quantitation of Gabra1 and serotonin transporter in mouse brain were also performed. Marble-burying behaviour increased significantly at high doses of RU24969 (15-20 mg/kg). The forced swimming test consistently showed elevated values at the same high concentrations, compared to the control. Altered reward-seeking behaviour was indicated by the sucrose preference test, notably at 15 and 20 mg/kg doses of RU24969. Nestlet shredding results did not show statistical significance among the tested animal groups. Gene expression analysis revealed reduced Gabra1 expression with increasing doses of RU, while serotonin transporter was not related to varying doses of RU24969. Western blotting corroborated these trends. The results underscore complex interactions between the serotonin system, GABAergic signaling, and OCD-relevant behaviours and suggest the use of intraperitoneal injection of 15 mg/kg of RU24969 to induce OCD-like behaviour in BALB/c mouse models.


Subject(s)
Obsessive-Compulsive Disorder , Female , Mice , Animals , Mice, Inbred BALB C , Obsessive-Compulsive Disorder/genetics , Serotonin 5-HT1 Receptor Agonists/pharmacology , Calcium Carbonate , Sucrose
16.
Article in English | MEDLINE | ID: mdl-38648186

ABSTRACT

RATIONALE: Early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. The analysis of exhaled volatile organic compounds (VOCs) is an emerging approach to identify prognostic and diagnostic biomarkers in pediatric asthma. OBJECTIVES: To assess the accuracy of gas chromatography-mass spectrometry based exhaled metabolite analysis to differentiate between controlled and uncontrolled pediatric asthma. METHODS: This study encompassed a discovery (SysPharmPediA) and validation phase (U-BIOPRED, PANDA). Firstly, exhaled VOCs that discriminated asthma control levels were identified. Subsequently, outcomes were validated in two independent cohorts. Patients were classified as controlled or uncontrolled, based on asthma control test scores and number of severe attacks in the past year. Additionally, potential of VOCs in predicting two or more future severe asthma attacks in SysPharmPediA was evaluated. MEASUREMENTS AND MAIN RESULTS: Complete data were available for 196 children (SysPharmPediA=100, U-BIOPRED=49, PANDA=47). In SysPharmPediA, after randomly splitting the population into training (n=51) and test sets (n=49), three compounds (acetophenone, ethylbenzene, and styrene) distinguished between uncontrolled and controlled asthmatics. The area under the receiver operating characteristic curve (AUROCC) for training and test sets were respectively: 0.83 (95% CI: 0.65-1.00) and 0.77 (95% CI: 0.58-0.96). Combinations of these VOCs resulted in AUROCCs of 0.74 ±0.06 (UBIOPRED) and 0.68 ±0.05 (PANDA). Attacks prediction tests, resulted in AUROCCs of 0.71 (95% CI 0.51-0.91) and 0.71 (95% CI 0.52-0.90) for training and test sets. CONCLUSIONS: Exhaled metabolites analysis might enable asthma control classification in children. This should stimulate further development of exhaled metabolites-based point-of-care tests in asthma.

17.
BMJ Open Respir Res ; 11(1)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663887

ABSTRACT

BACKGROUND: Four months after SARS-CoV-2 infection, 22%-50% of COVID-19 patients still experience complaints. Long COVID is a heterogeneous disease and finding subtypes could aid in optimising and developing treatment for the individual patient. METHODS: Data were collected from 95 patients in the P4O2 COVID-19 cohort at 3-6 months after infection. Unsupervised hierarchical clustering was performed on patient characteristics, characteristics from acute SARS-CoV-2 infection, long COVID symptom data, lung function and questionnaires describing the impact and severity of long COVID. To assess robustness, partitioning around medoids was used as alternative clustering. RESULTS: Three distinct clusters of patients with long COVID were revealed. Cluster 1 (44%) represented predominantly female patients (93%) with pre-existing asthma and suffered from a median of four symptom categories, including fatigue and respiratory and neurological symptoms. They showed a milder SARS-CoV-2 infection. Cluster 2 (38%) consisted of predominantly male patients (83%) with cardiovascular disease (CVD) and suffered from a median of three symptom categories, most commonly respiratory and neurological symptoms. This cluster also showed a significantly lower forced expiratory volume within 1 s and diffusion capacity of the lung for carbon monoxide. Cluster 3 (18%) was predominantly male (88%) with pre-existing CVD and diabetes. This cluster showed the mildest long COVID, and suffered from symptoms in a median of one symptom category. CONCLUSIONS: Long COVID patients can be clustered into three distinct phenotypes based on their clinical presentation and easily obtainable information. These clusters show distinction in patient characteristics, lung function, long COVID severity and acute SARS-CoV-2 infection severity. This clustering can help in selecting the most beneficial monitoring and/or treatment strategies for patients suffering from long COVID. Follow-up research is needed to reveal the underlying molecular mechanisms implicated in the different phenotypes and determine the efficacy of treatment.


Subject(s)
COVID-19 , Phenotype , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Female , Male , Middle Aged , Aged , Severity of Illness Index , Adult , Cohort Studies , Respiratory Function Tests , Cluster Analysis , Forced Expiratory Volume , Time Factors
18.
ACS Omega ; 9(16): 18654-18667, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680335

ABSTRACT

Pyrolysis offers a sustainable and efficient approach to resource utilization and waste management, transforming organic materials into valuable products. The quality and distribution of the pyrolysis products highly depend on the constituents' properties and set process parameters. This research aims to investigate and model this dependency, offering decision-makers a tool to guide them when designing the process for a particular application. Experimental data on the pyrolysis of various types of feedstocks processed at a wide range of pyrolysis temperatures (350-650 °C) are utilized to develop the prediction models. Four variables are modeled: the yield and energy content for both the biochar and bio-oil as a function of the pyrolysis temperature and feedstock characteristics. The models developed had very good prediction power with the coefficient of determination above 90%. The results highlight the advantages of food waste (leftover) as a suitable feedstock to produce biochar at the pyrolysis temperature within the range of 450-550 °C. Furthermore, the biofuels produced from food waste are found to be of good quality, with the bio-oil exceptionally high in energy content (HHV = 34.6 MJ/kg), which is almost 80% of that of diesel. The developed models provide a tool for predicting the biofuel yield and quality based on the feedstock selection and process temperature.

20.
BioTech (Basel) ; 13(1)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38534916

ABSTRACT

(1) Background: Cumin seeds, extracted from the plant Cuminum cyminum, are abundant in phenolic compounds and have been extensively researched for their chemical makeup and biological effects. The objective of this research is to enhance the water extraction of polyphenols through the water bath (WB) technique and to evaluate the antiradical, antibacterial, and anticancer effects of the extract. (2) Methods: Response Surface Methodology was used to find the best parameters to extract polyphenols. Three experimental parameters, time, temperature, and solid-liquid ratio, were tested. The disc diffusion method has been used to determine the antimicrobial activities against Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Candida albicans. The antiradical activity was performed using the DPPH method, while total phenolic content was performed using Folin-Ciocalteu. High-Performance Liquid Chromatography (HPLC) was conducted to analyze the phytochemical profile of WB extracts. The anticancer activity of the lyophilized extract was assessed against three cancer cell lines (colon (HT29), lung (A549), and breast (MCF7) cancer cell lines).; (3) Results: The optimal conditions for water extraction were 130 min at 72 °C. The total phenolic compounds yield (14.7 mg GAE/g DM) and antioxidant activity (0.52 mg trolox eq./mL) were obtained using a 1:40 solid-liquid ratio. The primary polyphenols identified were the flavonoids rutin (0.1 ppm) and ellagic acid (3.78 ppm). The extract had no antibacterial or antifungal activities against the microorganisms tested. The extract showed anticancer activity of about 98% against MCF7 (breast cancer cell line), about 81% against HT29 (colon cancer cell line), and 85% against A549 (lung cancer cell line) at high doses. (4) Conclusions: Extraction time and a high solid-liquid ratio had a positive impact on polyphenol recovery and in maintaining their quantity and quality. Furthermore, the optimal aqueous extract exhibited strong antiradical activity reflected by the inhibition of free radicals in addition to a significant specificity against the tested cancer cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL