Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506534

ABSTRACT

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Subject(s)
Carcinoma, Hepatocellular , Forkhead Box Protein O3 , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Male , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Forkhead Box Protein O3/metabolism , NF-kappa B/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Rats , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Chenopodiaceae/chemistry , Diethylnitrosamine/toxicity , Plant Extracts/pharmacology , Liver/drug effects , Liver/pathology , Liver/metabolism
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37895941

ABSTRACT

Suaeda vermiculata Forssk. ex JF Gmel. (SV), a traditional known plant, has shown in vitro cytotoxic activity against HepG2 and HepG-2/ADR (doxorubicin-resistant cells) liver cell carcinoma cell lines, as well as hepatoprotection against paracetamol and carbon tetrachloride (CCl4)-induced liver injury. The current study evaluated the protective effect of SV, administered against N-diethylnitrosamine (NDEA)-induced HCC in rats. The possible modulatory effect of SV on the PI3K/HIF-1α/c-MYC/iNOS pathway was investigated. Sixty male adult albino rats (200 ± 10 g) were equally classified into five groups. Group I served as a control; Group 2 (SV control group) received SV (p.o., 200 mg/kg body weight); Group 3 (NDEA-administered rats) received freshly prepared NDEA solution (100 mg/L); and Groups 4 and 5 received simultaneously, for 16 weeks, NDEA + SV extract (100 and 200 mg/kg, orally). NDEA-treated rats displayed significant increases in serum levels of AFP, CEA, PI3K, malondialdehyde (MDA), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGFR), with increased liver tissue protein expression of fibrinogen concomitant and significantly decreased concentrations of antioxidant parameters (catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH)) in comparison to normal rats. On the flip side, AFP, CEA, PI3K, MDA, EGFR, and VEGFR serum levels were significantly reduced in rats that received NDEA with SV, both at low (SV LD) and high (SV HD) doses, accompanied by significant improvements in antioxidant parameters compared to the NDEA-treated group. Conclusions: SV possesses a significant hepatoprotective effect against NDEA-induced HCC via inhibiting the PI3K/HIF-1α/c-MYC/iNOS pathway, suggesting that SV could be a promising hepatocellular carcinoma treatment.

3.
Int Immunopharmacol ; 123: 110777, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567014

ABSTRACT

BACKGROUND: Folic acid (FA)-induced acute renal injury (AKI) is a commonly and highly reproducible model used to study AKI. The current study aims to evaluate the possible protective effects of sulforaphane (SFN) against FA-induced renal damage and explore the underlying molecular mechanism. METHODS: The animals were divided into four groups (6 rats/group) as follows: normal group (received vehicle, p.o.), FA group (received 250 mg/kg, i.p.), SFN low dose group (received 15 mg/kg, p.o. plus FA 250 mg/kg, i.p.), SFN high dose group (30 mg/kg, p.o. plus FA 250 mg/kg, i.p.). At the end of the experiment, serum samples and kidney tissues were obtained to perform biochemical, molecular, and histopathological investigations. RESULTS: The present study showed that FA-caused AKI was confirmed by a significant elevation of kidney function biomarkers serum levels accompanied by an observation of histopathologic changes. Interestingly, SFN-administration significantly improved kidney function, reduced oxidative stress markers; MDA, NADPH oxidase, MPO, iNOS with up-regulation of GSH, GCLM, GPX4, SOD, NQO1, HO-1 and Nrf2 levels. SFN also downregulated proinflammatory markers. The results also demonstrated the anti-apoptotic effect of SFN through its ability to increase the antiapoptotic Bcl-2 protein and to decrease caspase-3. Moreover, SFN significantly decreased the relative expression of JNK, ERK-1/2, IRF3, and p38MAPK as compared to the FA-nephrotoxic group. CONCLUSION: The present study revealed that SFN possess an antioxidant, anti-inflammatory and antiapoptotic activity by modulating caspase-3, Bcl-2, ERK1/2, JNK, GCLM, NQO1, GPX4, Nrf2, HO-1 and P38 signaling pathways in a dose dependent manner which provides a potential therapeutic strategy for preventing FA-induced AKI.


Subject(s)
Acute Kidney Injury , NF-E2-Related Factor 2 , Rats , Animals , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , MAP Kinase Signaling System , Glomerular Filtration Rate , Isothiocyanates/therapeutic use , Isothiocyanates/pharmacology , Signal Transduction , Oxidative Stress , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy
4.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35215822

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, is currently developing into a rapidly disseminating and an overwhelming worldwide pandemic. In severe COVID-19 cases, hypercoagulability and inflammation are two crucial complications responsible for poor prognosis and mortality. In addition, coagulation system activation and inflammation overlap and produce life-threatening complications, including coagulopathy and cytokine storm, which are associated with overproduction of cytokines and activation of the immune system; they might be a lead cause of organ damage. However, patients with severe COVID-19 who received anticoagulant therapy had lower mortality, especially with elevated D-dimer or fibrin degradation products (FDP). In this regard, the discovery of natural products with anticoagulant potential may help mitigate the numerous side effects of the available synthetic drugs. This review sheds light on blood coagulation and its impact on the complication associated with COVID-19. Furthermore, the sources of natural anticoagulants, the role of nanoparticle formulation in this outbreak, and the prevalence of thrombosis with thrombocytopenia syndrome (TTS) after COVID-19 vaccines are also reviewed. These combined data provide many research ideas related to the possibility of using these anticoagulant agents as a treatment to relieve acute symptoms of COVID-19 infection.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/etiology , COVID-19 Vaccines/chemistry , COVID-19/complications , COVID-19/prevention & control , Nanoparticles/therapeutic use , Anticoagulants/administration & dosage , Anticoagulants/isolation & purification , Blood Coagulation , Blood Coagulation Disorders/classification , Blood Coagulation Disorders/prevention & control , Blood Coagulation Disorders/virology , COVID-19 Vaccines/administration & dosage , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Humans , Inflammation/etiology , Inflammation/prevention & control , Nanoparticles/chemistry , SARS-CoV-2/pathogenicity , Thrombophilia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...