Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611746

ABSTRACT

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Subject(s)
Chitinases , Insecticides , Animals , Humans , Chitinases/genetics , Chitinases/pharmacology , Larva , Serratia marcescens/genetics , Zea mays , Spodoptera , Escherichia coli , Cloning, Molecular , Crops, Agricultural , Insecticides/pharmacology
2.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235123

ABSTRACT

Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: "cardiotonic steroids", "anti-inflammatory", "antiviral", "anticancer", "toad venom", "bufadienolides", and "poison chemical composition". Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.


Subject(s)
Biological Products , Bufanolides , Cardiac Glycosides , Poisons , Animals , Antiviral Agents , Bufanolides/chemistry , Bufonidae , Cardenolides/chemistry , Cardiac Glycosides/pharmacology , Hormones , Humans , Lactones
3.
J Med Entomol ; 57(6): 1686-1693, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32785585

ABSTRACT

Forensic entomologists rely on laboratory growth data to estimate the time of colonization on human remains thus extrapolating a minimum postmortem interval (PMI) if assumptions are satisfied. The flesh fly Blaesoxipha plinthopyga (Wiedemann) is one species that occurs in casework in Idaho, Texas, and central California. Because of the few laboratory studies on the development of this fly, the following study was conducted to determine if different substrates impact immature development of the species. In this study, flies were reared on different substrates that are likely to be encountered at indoor and outdoor scenes (Wet Sand, Dry Sand, Clothes [Polyester fibers], and Carpet [Polypropylene fibers]) to determine the influence of substrate on larval, intrapuparial, and total immature development times at 25°C, 50% RH, and 14:10 (L:D) h cycle. The results revealed that substrate significantly affected minimum immature development times without affecting the sexes differently; though a female bias in sex ratio was observed consistently. Average minimum larval developmental times were 160-179 h with a significantly faster development in Carpet than in Clothes. Similarly, average minimum intrapuparial developmental times were 331-352 h; fastest on Carpet and the slowest in Dry Sand. For this species, it may be important to consider the substrates encountered at a death scene as they may affect the development of B. plinthopyga (Wiedemann) in casework by up to 29 h at 25°C and 50% humidity. These effects will also be important to consider when planning future development studies with the species.


Subject(s)
Forensic Entomology , Sarcophagidae/growth & development , Animals , Clothing , Diet , Floors and Floorcoverings , Larva/growth & development , Sand
SELECTION OF CITATIONS
SEARCH DETAIL
...