Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Clin Chim Acta ; 552: 117690, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38056548

ABSTRACT

Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.


Subject(s)
Biomarkers, Tumor , Neoplastic Cells, Circulating , Humans , Liquid Biopsy/methods , Prognosis , Blood Platelets/pathology , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment
2.
Pathol Res Pract ; 250: 154793, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37683388

ABSTRACT

Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of ß-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.

3.
Pathol Res Pract ; 248: 154728, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37542863

ABSTRACT

Cancer is a genetic and complex disorder, resulting from several events associated with onset, development, and metastasis. Tumor suppressors and oncogenes are among the main regulators of tumor progression, contributing to various cancer-related behaviors like cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. Transcription factors (TFs) could act as tumor suppressors or oncogenes in cancer progression. E-twenty-six/E26 (ETS) family of TFs have a winged helix-turn-helix (HLH) motif, which interacted with specific DNA regions with high levels of purines and GGA core. ETS proteins act as transcriptional repressors or activators to modulate the expression of target genes. ETS transcription factor ELK3 (ELK3), as a type of ETS protein, was shown to enhance in various cancers, suggesting that it may have an oncogenic role. These studies indicated that ELK3 promoted invasion, migration, cell cycle, proliferation, and EMT, and suppressed cell apoptosis. In addition, these studies demonstrated that ELK3 could be a promising diagnostic and prognostic biomarker in human cancer. Moreover, accumulating data proved that ELK3 could be a novel chemoresistance mediator in human cancer. Here, we aimed to explore the overall change of ELK3 and its underlying molecular mechanism in human cancers. Moreover, we aimed to investigate the potential role of ELK3 as a prognostic and diagnostic biomarker as well as its capability as a chemoresistance mediator in cancer.


Subject(s)
Neoplasms , Transcription Factors , Humans , Biomarkers , Cell Line, Tumor , Neoplasms/genetics , Oncogenes , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/metabolism
4.
Biomed Res Int ; 2023: 8334102, 2023.
Article in English | MEDLINE | ID: mdl-37304465

ABSTRACT

Background: Nowadays, due to various inherent properties, graphene-based nanoparticles are widely used in drug delivery research. On the other hand, folate receptors are highly expressed on the surface of human tumor cells. In this work, to enhance the 5-fluorouracil (5FU) and curcumin (Cur) effects on colon cancer, we constructed a folic acid- (FA-) modified codelivery carrier based on graphene nanoparticles (GO-Alb-Cur-FA-5FU). Materials and Methods: The HUVEC and HT-29 were selected for evaluating the antitumor effect of the prepared nanocarriers. The structure of nanocarriers was characterized by FTIR spectroscopy, X-ray diffraction analysis, TEM microscopy, and a DLS analyzer. The efficiency of the prepared carrier was evaluated by fluorescence microscopy using Annexin V and the PI kit. The cytotoxicity of the carrier's component individually and the efficacy of the drug carrier GO-Alb-Cur-FA-5FU were assessed by MTT. Results: The results of the pharmacological tests indicated that the new nanoparticles cause increased apparent toxicity in HT-29 cells. The apoptosis rate of the HT-29 and HUVEC cells treated with IC50 values of GO-Alb-Cur-FA-5FU for 48 h was higher than the cells treated with IC50 values of 5FU and Cur individually, which indicated the greater inhibitory efficacy of GO-Alb-Cur-FA-5FU than free drugs. Conclusion: The designed GO-Alb-CUR-FA-5FU delivery system can be applied for targeting colon cancer cells and can be severe as a potential candidate for future drug development.


Subject(s)
Colonic Neoplasms , Curcumin , Graphite , Humans , Fluorouracil/pharmacology , Curcumin/pharmacology , Albumins , Excipients , Folic Acid
5.
Biochem Pharmacol ; 212: 115572, 2023 06.
Article in English | MEDLINE | ID: mdl-37127247

ABSTRACT

Atherosclerosis is an LDL-driven and inflammatory disorder of the sub-endothelial space. Available data have proposed that various factors could affect atherosclerosis pathogenesis, including inflammation, oxidation of LDL particles, endothelial dysfunction, foam cell formation, proliferation, and migration of vascular smooth muscle cells (VSMCs). In addition, other research indicated that the crosstalk among atherosclerosis-induced cells is a crucial factor in modulating atherosclerosis. Extracellular vesicles arenanoparticleswith sizes ranging from 30 to 150 nm, playing an important role in various pathophysiological situations. Exosomes, asa form of extracellular vesicles, could affect the crosstalk between sub-endothelial cells. They can transport bioactive components like proteins, lipids, RNA, and DNA. As an important cargo in exosomes, noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs could modulate cellular functions by regulating the transcription, epigenetic alteration, and translation. The current work aimed to investigate the underlying molecular mechanisms of exosomal ncRNA as well as their potential as a diagnostic biomarker and therapeutic target in atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , RNA, Long Noncoding , Humans , Endothelial Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics
6.
Pathol Res Pract ; 246: 154490, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37141699

ABSTRACT

NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome pathway has a critical role in the pathogenesis of atherosclerosis. Activation of this pathway is implicated in the subendothelial inflammation and atherosclerosis progression. The NLRP3 inflammasome are cytoplasmic sensors with the distinct capacity to identify a wide range of inflammation-related signals, which enhance NLRP3 inflammasome assembly and allow it to trigger inflammation. This pathway is triggered by a variety of intrinsic signals which exist in atherosclerotic plaques, like cholesterol crystals and oxidized LDL. Further pharmacological findings indicated that NLRP3 inflammasome enhanced caspase-1-mediated secretion of pro-inflammatory mediators like interleukin (IL)- 1ß/18. Newly published cutting-edge studies suggested that non-coding RNAs (ncRNAs) including microRNAs (miRNAs, miRs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are major modulators of NLRP3 inflammasome in atherosclerosis. Therefore, in this review, we aimed to discuss the NLRP3 inflammasome pathway, biogenesis of ncRNAs as well as the modulatory role of ncRNAs in regulating the various mediators of NLRP3 inflammasome pathway including TLR4, NF-kB, NLRP3, and caspase 1. We also discussed the importance of NLRP3 inflammasome pathway-related ncRNAs as a diagnostic biomarker in atherosclerosis and current therapeutics in the modulation of NLRP3 inflammasome in atherosclerosis. Finally, we speak about the limitations and future prospects of ncRNAs in regulating inflammatory atherosclerosis via the NLRP3 inflammasome pathway.


Subject(s)
Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Humans , Atherosclerosis/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , MicroRNAs/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
7.
Pathol Res Pract ; 245: 154469, 2023 May.
Article in English | MEDLINE | ID: mdl-37100022

ABSTRACT

Circular RNAs, as a type of non-coding RNAs, are identified in a various cell. Circular RNAs have stable structures, conserved sequence, and tissue and cell-specific level. High throughput technologies have proposed that circular RNAs act via various mechanisms like sponging microRNAs and proteins, regulating transcription factors, and scaffolding mediators. Cancer is one of the major threat for human health. Emerging data have proposed that circular RNAs are dysregulated in cancers as well as are associated with aggressive behaviors of cancer -related behaviors like cell cycle, proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Among them, circ_0067934 was shown to act as an oncogene in cancers to enhance migration, invasion, proliferation, cell cycle, EMT, and inhibit cell apoptosis. In addition, these studies have proposed that it could be a promising diagnostic and prognostic biomarker in cancer. This study aimed to review the expression and molecular mechanism of circ_0067934 in modulating the malignant behaviors of cancers as well as to explore its potential as a target in cancer chemotherapy, diagnosis, prognosis and treatment.


Subject(s)
MicroRNAs , Neoplasms , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/genetics , Prognosis , Cell Proliferation , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/genetics
8.
Iran J Med Sci ; 48(2): 146-155, 2023 03.
Article in English | MEDLINE | ID: mdl-36895459

ABSTRACT

Background: Circulating microRNAs (miRNAs) can help to predict the chemotherapy response in breast cancer with promising results. The aim of the present study was to investigate the relationships between the miR-199a, miR-663a, and miR-663b expression and chemotherapy response in metastatic breast cancer patients. Methods: This study is a case-control study performed at Yasuj University of Medical Sciences (2018-2021). The expression levels of miR-663a, miR-663b, and miR-199a in the serum of 25 patients with metastatic breast cancer versus 15 healthy individuals were determined by the real-time polymerase chain reaction method. The response to treatment was followed up in a 24-month period. All patients were treated with second-line medications. Two or more combinations of these drugs were used: gemcitabine, Navelbine®, Diphereline®, Xeloda®, letrozole, Aromasin®, and Zolena®. Statistical analyses were performed in SPSS 21.0 and GraphPad Prism 6 software. The expression levels were presented as mean±SD and analyzed by Student's t test. Results: The results and clinicopathological features of patients were analyzed by t test. The statistical analysis showed that miR-663a expression was related to human epidermal growth factor receptor 2 (HER2) status and was significantly lower in the HER2+ than HER2- group (P=0.027). Moreover, the expression of miR-199a and miR-663b was significantly correlated with the response to treatment, in which the expression of miR-199a was higher in the poor-response group (P=0.049), while the higher expression of miR-663b was seen in the good-response group (P=0.009). Conclusion: These findings state that the high plasma level of miR-199a and the low plasma level of miR-663b may be related to chemoresistance in patients with metastatic breast cancer.


Subject(s)
Breast Neoplasms , Circulating MicroRNA , MicroRNAs , Humans , Female , MicroRNAs/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Case-Control Studies , Circulating MicroRNA/therapeutic use , Drug Resistance, Multiple
9.
Cell Signal ; 106: 110632, 2023 06.
Article in English | MEDLINE | ID: mdl-36805844

ABSTRACT

In atherosclerosis, the gradual buildup of lipid particles into the sub-endothelium of damaged arteries leads to numerous lipid alterations. The absorption of these modified lipids by monocyte-derived macrophages in the arterial wall leads to cholesterol accumulation and increases the likelihood of foam cell formation and fatty streak, which is an early characteristic of atherosclerosis. Foam cell formation is related to an imbalance in cholesterol influx, trafficking, and efflux. The formation of foam cells is heavily regulated by various mechanisms, among them, the role of epigenetic factors like microRNA alteration in the formation of foam cells has been well studied. Recent studies have focused on the potential interplay between microRNAs and foam cell formation in the pathogenesis of atherosclerosis; nevertheless, there is significant space to progress in this attractive field. This review has focused to examine the underlying processes of foam cell formation and microRNA crosstalk to provide a deep insight into therapeutic implications in atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Foam Cells , MicroRNAs/genetics , MicroRNAs/therapeutic use , Cholesterol , Atherosclerosis/pathology , Macrophages/pathology
10.
Sci Rep ; 13(1): 251, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604440

ABSTRACT

Transcranial Direct Current Stimulation (tDCS) is a growing empirical approach to improve athletic performance. Some recent studies have investigated the effects of transcutaneous spinal direct current stimulation (tsDCS) on the motor performance such as reaction time. TDCS and tsDCS can lead to alteration of the spontaneous neural activity, and the membrane potentials of motor neurons in cerebral cortex and spinal interneurons, respectively. Given the paucity of experimental studies on the non-invasive brain stimulation in the field of sports neuroscience, especially martial sports, the present study aimed at investigating the effects of neurostimulation in potentiating the motor and cognitive functions in experienced taekwondo practitioners. The study sample included 15 experienced male taekwondo players who received real or sham direct current stimulation on the primary motor cortex (M1) and the lumbar spinal segment (T12-L2) over two sessions, 72 h apart. Next, the performance of the participants was evaluated through a simulation of taekwondo exercise directly after the sham and real sessions. Moreover, a cognitive platform (CBS: Cambridge Brain Science) was used to investigate the participants' cognitive profile in each instance. Unlike sham stimulation, real tDCS was associated with improved selective attention and reaction time in both in the simulated task performance and cognitive examination. The concurrent cortical and trans-spinal tDCS was found to improve selective attention (31% performance improvement) (P < 0.0001) [EFFECT SIZE; 1.84]. and reduce reaction time (4.7% performance improvement) (P < 0.0001) [EFFECT SIZE; 0.02]. Meanwhile, the intervention failed to leave a significant change in cognitive functions evaluated through CBS (P > 0.05). As informed by our results, the present dual-mode neurostimulation could improve motor functions potentially through the effect of tsDCS over the spinal interneurons and tDCS over the primary motor cortex. Likewise, our findings suggested an improved performance in simulated taekwondo task after real- but not sham-stimulation. This study paves the way for designing neurostimulation protocols to improve the performance of professional athletes, namely martial art practitioners, including their accuracy and velocity of reactions. Such positive effects of neuostimulation in athletic performance as demonstrated in this research and similar reports are expected to enhance the athletes' success in professional competitions.


Subject(s)
Athletic Performance , Martial Arts , Transcranial Direct Current Stimulation , Humans , Male , Transcranial Direct Current Stimulation/methods , Athletic Performance/physiology , Brain , Exercise
12.
Int Immunopharmacol ; 113(Pt A): 109318, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257258

ABSTRACT

A variety of mechanisms contribute to the occurrence and development of inflammatory atherosclerosis (IA), resulting in cardiovascular disease. PCSK9 (proprotein convertase subtilisin/ kexin type 9) has now been recognized as a key player in the pathophysiology of atherosclerosis. Following PCSK9 activation, LDL receptors (LDLR) are degraded and as a result, LDL cholesterol (LDLC) levels are increased. Increasing evidence reports that the PCSK9 axis mediates IA through different pathways, such as LDLR, LOX1, NF-kB, and TLR4. In recent years, PCSK9 pathway dysregulation has been identified as one of the fundamental mechanisms involved in IA. Recently, the importance of epigenetic factors, in particular, in non-coding RNAs, including miRNAs and long ncRNAs (lncRNAs) as well as circular RNAs (circRNAs) in the regulation of physiological and pathological events has received great attention. In this regard, an expanding body of research has revealed that different ncRNAs play important roles in the progression of inflammatory atherosclerosis through targeting genes related to the PCSK9 pathway at the post-transcriptional level. Of importance, the current study aimed to review the relationship between the various ncRNAs and PCSK9 pathway to identify the molecular mechanisms underlying IA pathogenesis as well as to introduce the novel PCSK9 pathway-related therapeutic interventions in combating IA.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Humans , Atherosclerosis/therapy , Atherosclerosis/drug therapy , Cholesterol, LDL/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , MicroRNAs , RNA, Long Noncoding , RNA, Circular
13.
Biomed Mater ; 17(4)2022 06 22.
Article in English | MEDLINE | ID: mdl-35609602

ABSTRACT

The aim of this paper was to design and fabricate a novel composite scaffold based on the combination of 3D-printed polylactic acid-based triply periodic minimal surfaces (TPMSs) and cell-laden alginate hydrogel. This novel scaffold improves the low mechanical properties of alginate hydrogel and can also provide a scaffold with a suitable pore size, which can be used in bone regeneration applications. In this regard, an implicit function was used to generate some gyroid TPMS scaffolds. Then the fused deposition modeling process was employed to print the scaffolds. Moreover, the micro computed tomography technique was employed to assess the microstructure of 3D-printed TPMS scaffolds and obtain the real geometries of printed scaffolds. The mechanical properties of composite scaffolds were investigated under compression tests experimentally. It was shown that different mechanical behaviors could be obtained for different implicit function parameters. In this research, to assess the mechanical behavior of printed scaffolds in terms of the strain-stress curves on, two approaches were presented: equivalent volume and finite element-based volume. Results of strain-stress curves showed that the finite-element based approach predicts a higher level of stress. Moreover, the biological response of composite scaffolds in terms of cell viability, cell proliferation, and cell attachment was investigated. In this vein, a dynamic cell culture system was designed and fabricated, which improves mass transport through the composite scaffolds and applies mechanical loading to the cells, which helps cell proliferation. Moreover, the results of the novel composite scaffolds were compared to those without alginate, and it was shown that the composite scaffold could create more viability and cell proliferation in both dynamic and static cultures. Also, it was shown that scaffolds in dynamic cell culture have a better biological response than in static culture. In addition, scanning electron microscopy was employed to study the cell adhesion on the composite scaffolds, which showed excellent attachment between the scaffolds and cells.


Subject(s)
Alginates , Hydrogels , Cell Culture Techniques , Polyesters/chemistry , Porosity , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , X-Ray Microtomography
14.
PLoS Comput Biol ; 18(4): e1009962, 2022 04.
Article in English | MEDLINE | ID: mdl-35472201

ABSTRACT

K-Ras activating mutations are significantly associated with tumor progression and aggressive metastatic behavior in various human cancers including pancreatic cancer. So far, despite a large number of concerted efforts, targeting of mutant-type K-Ras has not been successful. In this regard, we aimed to target this oncogene by a combinational approach consisting of small peptide and small molecule inhibitors. Based on a comprehensive analysis of structural and physicochemical properties of predominantly K-Ras mutants, an anti-cancer peptide library and a small molecule library were screened to simultaneously target oncogenic mutations and functional domains of mutant-type K-Ras located in the P-loop, switch I, and switch II regions. The selected peptide and small molecule showed notable binding affinities to their corresponding binding sites, and hindered the growth of tumor cells carrying K-RasG12D and K-RasG12C mutations. Of note, the expression of K-Ras downstream genes (i.e., CTNNB1, CCND1) was diminished in the treated Kras-positive cells. In conclusion, our combinational platform signifies a new potential for blockade of oncogenic K-Ras and thereby prevention of tumor progression and metastasis. However, further validations are still required regarding the in vitro and in vivo efficacy and safety of this approach.


Subject(s)
Enzyme Inhibitors , Genes, ras , Mutation , Pancreatic Neoplasms , Peptides , Proto-Oncogene Proteins p21(ras) , Small Molecule Libraries , Enzyme Inhibitors/pharmacology , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Peptides/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics
15.
Burns ; 48(7): 1690-1705, 2022 11.
Article in English | MEDLINE | ID: mdl-34973854

ABSTRACT

Tissue engineering is an emerging method for replacing damaged tissues. In this study, the potential application of electrospun polycaprolactone/chitosan/ the internal layer of oak fruit (Jaft) as skin scaffolds was investigated. A combination of Polycaprolactone (PCL), chitosan (CH), and the internal layer of oak fruit (Jaft) was used to incorporate mechanical properties of synthetic polymers, biological properties of natural polymers, and antibacterial activity of Jaft. Physical and morphological characteristics of prepared scaffolds were investigated using a scanning electron microscope (SEM), mechanical analysis, swelling ratio, and contact angle. Moreover, chemical and biological properties were evaluated by Fourier-transform infrared spectroscopy (FTIR), chromatography, flow cytometry, DAPI staining, MTT assay, and trypan blue exclusion assay. Obtained results demonstrated that the fabricated scaffolds have good mechanical properties. Moreover, the addition of chitosan and Jaft to the PCL scaffolds improved their water absorption capacity as well as surface hydrophilicity. MTT results showed the fabricated nanofibrous scaffolds have adequate cell viability, which is higher than the cell culture plate at each time point of culture. Furthermore, SEM images of cultured scaffolds, trypan blue exclusion assay, and DAPI staining confirmed that fibroblast cells could be well-attached and proliferate on the PCL/CH/Jaft scaffolds. Results have proven that this novel bioactive scaffold has promising mechanical properties, suitable biocompatibility in vitro, and in vivo. Consequently, it could be a promising candidate for skin tissue engineering applications.


Subject(s)
Burns , Chitosan , Nanofibers , Humans , Nanofibers/chemistry , Chitosan/pharmacology , Tissue Scaffolds/chemistry , Trypan Blue/pharmacology , Biocompatible Materials/pharmacology , Burns/therapy , Polyesters , Tissue Engineering/methods , Bandages , Anti-Bacterial Agents/pharmacology , Water/chemistry , Water/pharmacology , Cell Proliferation
16.
Cancer Cell Int ; 21(1): 470, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488747

ABSTRACT

Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.

17.
Neuroscience ; 463: 116-127, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33794337

ABSTRACT

Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17ß-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17ß-estradiol (EST), injected subcutaneously in the neck region, twice weekly. Data revealed that treatment with 17ß-estradiol therapy (CPZ+EST) improved neurological behavioral deficits, displayed by a significant reduction in escape latencies, in comparison to untreated CPZ mice. Also, administration of 17ß-estradiol caused a decrease in demyelination levels and axonal injury, as demonstrated by staining with Luxol fast blue, immunofluorescence to myelin basic protein, and transmission electron microscopy analysis. In addition, at the transcriptional level in the brain, mice treated with 17ß-estradiol (CPZ+EST) showed a decrease in the levels of M1-assosicted microglia markers (CD86, iNOS and MHC-II) whereas M2-associated genes (Arg-1, CD206 and Trem-2) were increased, compared to CPZ mice. Moreover, administration of 17ß-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17ß-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17ß-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.


Subject(s)
Cuprizone , Demyelinating Diseases , Animals , Corpus Callosum/metabolism , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Disease Models, Animal , Estradiol/pharmacology , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein
19.
Cancer Gene Ther ; 28(6): 581-589, 2021 06.
Article in English | MEDLINE | ID: mdl-33654227

ABSTRACT

Neoepitopes or neoantigens are a spectrum of unique mutations presented in a particular patient's tumor. Neoepitope-based adoptive therapies have the potential of tumor eradication without undue damaging effect on normal tissues. In this context, methods based on the T cell receptor (TCR) engineering or chimeric antigen receptors (CARs) have shown great promise. This review focuses on the TCR-like CARs and TCR-CARs directed against tumor-derived epitopes, with a concerted view on neoepitopes. We also address the current limitations of the field to know how to harness the full benefits of this approach and thereby design a sustained and specific antitumor therapy.


Subject(s)
Antigens, Neoplasm/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Antigens, Neoplasm/therapeutic use , Humans , Immunotherapy, Adoptive , Neoplasms/genetics , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/immunology
20.
J Biomater Appl ; 35(7): 743-753, 2021 02.
Article in English | MEDLINE | ID: mdl-32807016

ABSTRACT

In this study, turmeric's active ingredient (Curcumin) was encapsulated into RGD modified Liposomes (RGD-Lip-Cur) its cytotoxic effect on the breast cancer cell line (MCF-7) was evaluated by MTT, flow cytometry and Caspase assay. Liposomes were characterized using transmission electron microscopy (TEM). Results demonstrated that the liposomes were spherical in shape, ranging from 70 to 100 nm. MTT assay revealed that RGD-Lip-Cur had a significant cytotoxic effect on MCF-7 cells at concentrations of 32, 16 and 4 µg/ml compared to Lip-Cur (P < 0.05) and curcumin (P < 0.01). The apoptosis assay demonstrated that RGD-Lip-Cur induces the apoptosis in MCF-7 cells (39.6% vs 40.2% for initial and secondary apoptosis) significantly more than Lip-Cur (67.7% vs 9.16% for initial and secondary apoptosis) and free curcumin (7.84% vs 38.8% for initial and secondary apoptosis). Moreover, caspase assay showed that RGD-Lip-Cur activates caspase 3/7 compared to Lip-Cur (P < 0.05) and free curcumin (P < 0.01). The RGD-Lip-Cur was similar to the control group and had no significant cytotoxicity effect. It is concluded that RGD-Lip-Cur as a novel carrier have high cytotoxicity effect on breast cancer cell line (MCF-7).


Subject(s)
Breast Neoplasms/drug therapy , Curcumin/chemistry , Drug Delivery Systems , Liposomes/chemistry , Oligopeptides/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Cell Survival , Female , Humans , MCF-7 Cells , Microscopy, Electron, Transmission , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...