Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Drug Chem Toxicol ; : 1-10, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37334811

ABSTRACT

The aim of this study was to evaluate antioxidative features using 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) scavenging method, bovine serum albumin (BSA)-binding properties with usage of spectrofluorimetric method, proliferative and cyto/genotoxic status by use of chromosome aberration test, and antimicrobial potential using broth microdilution method, followed by resazurin assay of benzyl-, isopropyl-, isobutyl and phenylparaben in vitro. Our results showed that all parabens had significant antiradical scavenger activity compared to p-hydroxybenzoic acid (PHBA) precursor. Higher mitotic index for benzyl-, isopropyl and isobutylparaben (250 µg/mL) in comparison with control was demonstrated. An increase in the frequency of acentric fragments in lymphocytes treated with benzylparaben and isopropylparaben (125 and 250 µg/mL), and isobutylparaben (250 µg/mL) was observed. Isobutylparaben (250 µg/mL) induced higher number of dicentric chromosomes. An increased number of minute fragments in lymphocytes exposed to benzylparaben (125 and 250 µg/mL) was found. A significant difference in the frequency of chromosome pulverization, between phenylparaben (250 µg/mL) and control, was detected. Benzylparaben (250 µg/mL) and phenylparaben (62.5 µg/mL) caused an increase in the number of apoptotic cells, while isopropylparaben (62.5, 125 and 250 µg/mL) and isobutylparaben (62.5 and 125 µg/mL) induced higher frequency of necrosis. Minimum inhibitory concentration (MIC) of tested parabens ranged 15.62-250 µg/mL for bacteria, and 125-500 µg/mL for the yeast. Minimum microbiocidal concentration ranged 31.25 to 500 µg/mL, and 250 to 1000 µg/mL in bacteria and fungi respectively. The lowest MICs for bacteria were observed for phenyl- (15.62 µg/mL) and isopropylparaben (31.25 µg/mL) against Enterococcus faecalis.

2.
Plants (Basel) ; 10(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34961270

ABSTRACT

Cotoneaster integerrimus represents a multiploid and facultative apomictic system of widely distributed mountain populations. We used flow cytometry to determine genome size, ploidy level, and reproduction mode variation of the Balkan populations, supplemented by analysis of nuclear microsatellites in order to address: (i) geographic distribution and variation of cytotypes among the populations; (ii) variation of reproduction mode and the frequency of sexuality; (iii) pathways of endosperm formation among the sampled polyploids and their endosperm balance requirements; (iv) genotypic diversity and geographic distribution of clonal lineages of polyploids. The prevalence of apomictic tetraploid cytotype followed by sexual diploids and extremely rare triploids was demonstrated. This prevalence of tetraploids affected the populations' structure composed from clonal genotypes with varying proportions. The co-occurrence of diploids and tetraploids generated higher cytotype, reproductive mode, and genotypic diversity, but mixed-ploidy sites were extremely rare. The endosperm imbalance facilitates the development and the occurrence of intermediate triploids in mixed-ploidy populations, but also different tetraploid lineages elsewhere with unbalanced endosperm. All these results showed that the South European populations of C. integerrimus have higher levels of cytotype and reproductive diversity compared to the Central European ones. Therefore, the South European populations can be considered as a potential reservoir of regional and global diversity for this species.

3.
Drug Chem Toxicol ; 44(2): 190-197, 2021 Mar.
Article in English | MEDLINE | ID: mdl-30607990

ABSTRACT

Lavender and immortelle essential oils (EOs) are widely used to treat a spectrum of human conditions. The aim of this study was to investigate cyto/genotoxic effects of lavender and immortelle EOs using plant cells (Allium cepa) and human lymphocytes, as well as their antimicrobial potential using nine strains of bacteria and fungi. Our results for lavender and immortelle EOs showed that the frequency of chromosome aberrations (CAs) was increased in comparison with controls. For both oils, increased frequency of apoptosis for all concentrations, as well as the frequency of necrosis (0.10/0.30 µl/ml for lavender/immortelle, respectively) was demonstrated. In human lymphocytes, differences for minute fragments between immortelle oil (0.10 µl/ml) and controls were observed. Increased frequency of apoptosis was detected for immortelle oil (0.20 µl/ml), while both oils (0.20; 0.30 µl/ml lavender, and immortelle at all concentrations) induced higher frequency of necrosis in comparison with controls. Lavender EO was effective against all tested Gram-positive and Gram-negative bacteria, while immortelle EO inhibited only Gram-positive bacteria. Both oils exhibited antifungal effect. Our results demonstrated that lavender and immortelle EOs showed cyto/genotoxic effects in both, plant and human cells, as well as antimicrobial properties. Further studies are needed to strengthen these findings.


Subject(s)
Helichrysum/chemistry , Lavandula/chemistry , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Apoptosis/drug effects , Bacteria/drug effects , Chromosome Aberrations , Dose-Response Relationship, Drug , Fungi/drug effects , Humans , Lymphocytes/drug effects , Mutagenicity Tests , Oils, Volatile/pharmacology , Oils, Volatile/toxicity , Onions/cytology , Onions/drug effects , Plant Oils/pharmacology , Plant Oils/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...