Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 179, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924766

ABSTRACT

Hereditary autoinflammatory diseases are caused by gene mutations of the innate immune pathway, e.g. nucleotide receptor protein 3 (NLRP3). Here, we report a four-generation family with cold-induced urticarial rash, arthralgia, chills, headache and malaise associated with an autosomal-dominant inheritance. Genetic studies identify a substitution mutation in gene F12 (T859A, resulting in p.W268R) which encodes coagulation factor XII (FXII). Functional analysis reveals enhanced autocatalytic cleavage of the mutated protein and spontaneous FXII activation in patient plasma and in supernatant of transfected HEK293 cells expressing recombinant W268R-mutated proteins. Furthermore, we observe reduced plasma prekallikrein, cleaved high molecular weight kininogen and elevated plasma bradykinin. Neutrophils are identified as a local source of FXII. Interleukin-1ß (IL-1ß) is upregulated in lesional skin and mononuclear donor cells exposed to recombinant mutant proteins. Treatment with icatibant (bradykinin-B2-antagonist) or anakinra (interleukin-1-antagonist) reduces disease activity in patients. In conclusion, our findings provide a link between contact system activation and cytokine-mediated inflammation.


Subject(s)
Cold Temperature/adverse effects , Factor XII/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Adult , Blood Coagulation , Bradykinin/analogs & derivatives , Bradykinin/blood , Bradykinin/therapeutic use , Factor XII/genetics , Female , HEK293 Cells , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , Inflammation Mediators , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/metabolism , Kininogen, High-Molecular-Weight/metabolism , Male , Middle Aged , Mutation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils , Pedigree , Phenotype , Plasma Kallikrein/metabolism , Recombinant Proteins , Skin/pathology
2.
J Biol Chem ; 295(2): 363-374, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31771982

ABSTRACT

Coagulation factor XII (FXII) drives production of the inflammatory peptide bradykinin. Pathological mutations in the F12 gene, which encodes FXII, provoke acute tissue swelling in hereditary angioedema (HAE). Interestingly, a recently identified F12 mutation, causing a W268R substitution, is not associated with HAE. Instead, FXII-W268R carriers experience cold-inducible urticarial rash, arthralgia, fever, and fatigue. Here, we aimed to investigate the molecular characteristics of the FXII-W268R variant. We expressed wild type FXII (FXII-WT), FXII-W268R, and FXII-T309R (which causes HAE), as well as other FXII variants in HEK293 freestyle cells. Using chromogenic substrate assays, immunoblotting, and ELISA, we analyzed expression media, cell lysates, and purified proteins for FXII activation. Recombinant FXII-W268R forms increased amounts of intracellular cleavage products that are also present in expression medium and display enzymatic activity. The active site-incapacitated variant FXII-W268R/S544A reveals that intracellular fragmentation is largely dependent on autoactivation. Purified FXII-W268R is highly sensitive to activation by plasma kallikrein and plasmin, compared with FXII-WT or FXII-T309R. Furthermore, binding studies indicated that the FXII-W268R variant leads to the exposure of a plasminogen-binding site that is cryptic in FXII-WT. In plasma, recombinant FXII-W268R spontaneously triggers high-molecular-weight kininogen cleavage. Our findings suggest that the W268R substitution influences FXII protein conformation and exposure of the activation loop, which is concealed in FXII-WT. This results in intracellular autoactivation and constitutive low-grade secretion of activated FXII. These findings help to explain the chronically increased contact activation in carriers of the FXII-W268R variant.


Subject(s)
Factor XII/genetics , Point Mutation , Amino Acid Substitution , Catalytic Domain , Enzyme Activation , Factor XII/chemistry , Factor XII/metabolism , HEK293 Cells , Humans , Kringles
SELECTION OF CITATIONS
SEARCH DETAIL
...