Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 594, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36182956

ABSTRACT

Corynebacterium glutamicum is the major host for the industrial production of amino acids and has become one of the best studied model organisms in microbial biotechnology. Rational strain construction has led to an improvement of producer strains and to a variety of novel producer strains with a broad substrate and product spectrum. A key factor for the success of these approaches is detailed knowledge of transcriptional regulation in C. glutamicum. Here, we present a large compendium of 927 manually curated microarray-based transcriptional profiles for wild-type and engineered strains detecting genome-wide expression changes of the 3,047 annotated genes in response to various environmental conditions or in response to genetic modifications. The replicates within the 927 experiments were combined to 304 microarray sets ordered into six categories that were used for differential gene expression analysis. Hierarchical clustering confirmed that no outliers were present in the sets. The compendium provides a valuable resource for future fundamental and applied research with C. glutamicum and contributes to a systemic understanding of this microbial cell factory. Measurement(s) Gene Expression Analysis Technology Type(s) Two Color Microarray Factor Type(s) WT condition A vs. WT condition B • Plasmid-based gene overexpression in parental strain vs. parental strain with empty vector control • Deletion mutant vs. parental strain Sample Characteristic - Organism Corynebacterium glutamicum Sample Characteristic - Environment laboratory environment Sample Characteristic - Location Germany.


Subject(s)
Corynebacterium glutamicum , Amino Acids , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Germany
2.
J Bacteriol ; 201(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31358612

ABSTRACT

The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative decarboxylation of pyruvate, yielding acetyl coenzyme A (acetyl-CoA) and CO2 The PDHC-deficient Corynebacterium glutamicum ΔaceE strain therefore lacks an important decarboxylation step in its central metabolism. Additional inactivation of pyc, encoding pyruvate carboxylase, resulted in a >15-h lag phase in the presence of glucose, while no growth defect was observed on gluconeogenetic substrates, such as acetate. Growth was successfully restored by deletion of ptsG, encoding the glucose-specific permease of the phosphotransferase system (PTS), thereby linking the observed phenotype to the increased sensitivity of the ΔaceE Δpyc strain to glucose catabolism. In this work, the ΔaceE Δpyc strain was used to systematically study the impact of perturbations of the intracellular CO2/HCO3- pool on growth and anaplerotic flux. Remarkably, all measures leading to enhanced CO2/HCO3- levels, such as external addition of HCO3-, increasing the pH, or rerouting metabolic flux via the pentose phosphate pathway, at least partially eliminated the lag phase of the ΔaceE Δpyc strain on glucose medium. In accordance with these results, inactivation of the urease enzyme, lowering the intracellular CO2/HCO3- pool, led to an even longer lag phase, accompanied by the excretion of l-valine and l-alanine. Transcriptome analysis, as well as an adaptive laboratory evolution experiment with the ΔaceE Δpyc strain, revealed the reduction of glucose uptake as a key adaptive measure to enhance growth on glucose-acetate mixtures. Taken together, our results highlight the significant impact of the intracellular CO2/HCO3- pool on metabolic flux distribution, which becomes especially evident in engineered strains exhibiting low endogenous CO2 production rates, as exemplified by PDHC-deficient strains.IMPORTANCE CO2 is a ubiquitous product of cellular metabolism and an essential substrate for carboxylation reactions. The pyruvate dehydrogenase complex (PDHC) catalyzes a central metabolic reaction contributing to the intracellular CO2/HCO3- pool in many organisms. In this study, we used a PDHC-deficient strain of Corynebacterium glutamicum, which additionally lacked pyruvate carboxylase (ΔaceE Δpyc). This strain featured a >15-h lag phase during growth on glucose-acetate mixtures. We used this strain to systematically assess the impact of alterations in the intracellular CO2/HCO3- pool on growth in glucose-acetate medium. Remarkably, all measures enhancing CO2/HCO3- levels successfully restored growth. These results emphasize the strong impact of the intracellular CO2/HCO3- pool on metabolic flux, especially in strains exhibiting low endogenous CO2 production rates.


Subject(s)
Bicarbonates/metabolism , Carbon Dioxide/metabolism , Corynebacterium glutamicum/growth & development , Pyruvate Dehydrogenase Complex/genetics , Bacterial Proteins/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Phenotype
3.
Biotechnol Bioeng ; 114(3): 560-575, 2017 03.
Article in English | MEDLINE | ID: mdl-27641904

ABSTRACT

Performance losses during scale-up are described since decades, but are still one of the major obstacles for industrial bioprocess development. Consequently, robustness to inhomogeneous cultivation environments is an important quality of industrial production organisms. Especially, Corynebacterium glutamicum was proven to have an outstanding resistance against rapid changes of oxygen and substrate availability as occurring in industrial scale bioreactors. This study focuses on the identification of metabolic key mechanisms for this robustness to get a deeper insight and provide future targets for process orientated strain development. A 1,5-diaminopentane producing C. glutamicum strain was cultivated in a two compartment scale-down device to create short-term environmental changes simulating industrial scale cultivation conditions. Using multi omics based methods, it is shown, that central metabolism is flexibly rearranged under short-term oxygen depletion and carbon source excess to overcome shortage in NAD+ recycling. In order to balance the redox state, key enzymes for the non-oxygen dependent fermentative NAD+ regeneration were significantly up-regulated while parts of non-essential pathways were down-regulated. The transfer of the cells back into the well aerated zones with low substrate concentration triggers an additional upregulation of genes for the re-assimilation of previously formed side products, showing L-lactate forming and utilizing reactions being active at the same time. Especially L-lactate as reversible and flexible external buffer for carbon and redox equivalents puts C. glutamicum in a robust position to deal with inhomogeneity in large scale processes. Biotechnol. Bioeng. 2017;114: 560-575. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Corynebacterium glutamicum/metabolism , Diamines/metabolism , Pentanes/metabolism , Diamines/analysis , Gene Expression Profiling , Glucose/metabolism , Metabolic Networks and Pathways , Oxygen/analysis , Oxygen/metabolism , Pentanes/analysis
4.
Appl Environ Microbiol ; 82(20): 6141-6149, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27520809

ABSTRACT

Precise control of microbial gene expression resulting in a defined, fast, and homogeneous response is of utmost importance for synthetic bio(techno)logical applications. However, even broadly applied biotechnological workhorses, such as Corynebacterium glutamicum, for which induction of recombinant gene expression commonly relies on the addition of appropriate inducer molecules, perform moderately in this respect. Light offers an alternative to accurately control gene expression, as it allows for simple triggering in a noninvasive fashion with unprecedented spatiotemporal resolution. Thus, optogenetic switches are promising tools to improve the controllability of existing gene expression systems. In this regard, photocaged inducers, whose activities are initially inhibited by light-removable protection groups, represent one of the most valuable photoswitches for microbial gene expression. Here, we report on the evaluation of photocaged isopropyl-ß-d-thiogalactopyranoside (IPTG) as a light-responsive control element for the frequently applied tac-based expression module in C. glutamicum In contrast to conventional IPTG, the photocaged inducer mediates a tightly controlled, strong, and homogeneous expression response upon short exposure to UV-A light. To further demonstrate the unique potential of photocaged IPTG for the optimization of production processes in C. glutamicum, the optogenetic switch was finally used to improve biosynthesis of the growth-inhibiting sesquiterpene (+)-valencene, a flavoring agent and aroma compound precursor in food industry. The variation in light intensity as well as the time point of light induction proved crucial for efficient production of this toxic compound. IMPORTANCE: Optogenetic tools are light-responsive modules that allow for a simple triggering of cellular functions with unprecedented spatiotemporal resolution and in a noninvasive fashion. Specifically, light-controlled gene expression exhibits an enormous potential for various synthetic bio(techno)logical purposes. Before our study, poor inducibility, together with phenotypic heterogeneity, was reported for the IPTG-mediated induction of lac-based gene expression in Corynebacterium glutamicum By applying photocaged IPTG as a synthetic inducer, however, these drawbacks could be almost completely abolished. Especially for increasing numbers of parallelized expression cultures, noninvasive and spatiotemporal light induction qualifies for a precise, homogeneous, and thus higher-order control to fully automatize or optimize future biotechnological applications.


Subject(s)
Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/radiation effects , Gene Expression Regulation, Bacterial/radiation effects , Isopropyl Thiogalactoside/metabolism , Promoter Regions, Genetic/radiation effects , Sesquiterpenes/metabolism , Corynebacterium glutamicum/genetics , Sesquiterpenes/chemistry , Ultraviolet Rays
5.
Appl Microbiol Biotechnol ; 100(15): 6739-6753, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27170323

ABSTRACT

In recent years, the application of transcription factor-based biosensors for the engineering of microbial production strains opened up new opportunities for industrial biotechnology. However, the design of synthetic regulatory circuits depends on the selection of suitable transcription factor-promoter pairs to convert the concentration of effector molecules into a measureable output. Here, we present an efficient strategy to screen promoter libraries for appropriate parts for biosensor design. To this end, we pooled the strains of the Alon library containing about 2000 different Escherichia coli promoter-gfpmut2 fusions, and enriched galactose- and L-phenylalanine-responsive promoters by toggled rounds of positive and negative selection using fluorescence-activated cell sorting (FACS). For both effectors, responsive promoters were isolated and verified by cultivation in microtiter plates. The promoter of mtr, encoding an L-tryptophan-specific transporter, was identified as suitable part for the construction of an L-phenylalanine biosensor. In the following, we performed a comparative analysis of different biosensor constructs based on the mtr promoter. The obtained data revealed a strong influence of the biosensor architecture on the performance characteristics. For proof-of-principle, the mtr sensor was applied in a FACS high-throughput screening of an E. coli MG1655 mutant library for the isolation of L-phenylalanine producers. These results emphasize the developed screening approach as a convenient strategy for the identification of effector-responsive promoters for the design of novel biosensors.


Subject(s)
Amino Acid Transport Systems/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Galactose/metabolism , Phenylalanine/metabolism , Promoter Regions, Genetic/genetics , Biosensing Techniques , Flow Cytometry/methods , Gene Library , High-Throughput Screening Assays , Transcription Factors/genetics
6.
Appl Microbiol Biotechnol ; 100(1): 79-90, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26521244

ABSTRACT

Living organisms have evolved a plethora of sensing systems for the intra- and extracellular detection of small molecules, ions or physical parameters. Several recent studies have demonstrated that these principles can be exploited to devise synthetic regulatory circuits for metabolic engineering strategies. In this context, transcription factors (TFs) controlling microbial physiology at the level of transcription play a major role in biosensor design, since they can be implemented in synthetic circuits controlling gene expression in dependency of, for example, small molecule production. Here, we review recent progress on the utilization of TF-based biosensors in microbial biotechnology highlighting different areas of application. Recent advances in metabolic engineering reveal TF-based sensors to be versatile tools for strain and enzyme development using high-throughput (HT) screening strategies and adaptive laboratory evolution, the optimization of heterologous pathways via the implementation of dynamic control circuits and for the monitoring of single-cell productivity in live cell imaging studies. These examples underline the immense potential of TF-based biosensor circuits but also identify limitations and room for further optimization.


Subject(s)
Biosensing Techniques/methods , Biotechnology/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Regulatory Networks
7.
Metab Eng ; 32: 184-194, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26453945

ABSTRACT

Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.


Subject(s)
Biosensing Techniques , Corynebacterium glutamicum/metabolism , Valine/biosynthesis , Corynebacterium/genetics , Corynebacterium/metabolism , Corynebacterium glutamicum/genetics , DNA, Bacterial/genetics , DNA, Recombinant , Directed Molecular Evolution , Fluorescent Dyes , Metabolic Engineering , Mutation
8.
PLoS One ; 9(1): e85731, 2014.
Article in English | MEDLINE | ID: mdl-24465669

ABSTRACT

The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.


Subject(s)
Biosensing Techniques/methods , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Pyruvate Dehydrogenase Complex/metabolism , Valine/biosynthesis , Fluorescence , Microfluidics , Online Systems , Phenotype
9.
J Biol Chem ; 286(18): 16491-503, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21454547

ABSTRACT

The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.


Subject(s)
Cell Membrane/enzymology , Mutation, Missense , Protein Multimerization/physiology , raf Kinases/metabolism , Amino Acid Motifs , Amino Acid Substitution , Animals , COS Cells , Cell Membrane/genetics , Chlorocebus aethiops , Humans , Protein Structure, Tertiary , raf Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...