Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37760962

ABSTRACT

Radiotherapy (RT) is an effective curative cancer treatment. However, RT can seriously damage kidney tissues resulting in radiotherapy nephropathy (RN) where oxidative stress, inflammation, and apoptosis are among the common pathomechanisms. Carvacrol and thymol are known for their antioxidative, anti-inflammatory, and radioprotective activities. Therefore, this study investigated the nephroprotective potentials of carvacrol and/or thymol against gamma (γ) irradiation-induced nephrotoxicity in rats along with the nephroprotection mechanisms, particularly the involvement of insulin-like growth factor-1 (IGF-1) and calcitonin gene-related peptide (CGRP). Methods: Male rats were injected with carvacrol and/or thymol (80 and 50 mg/kg BW in the vehicle, respectively) for five days and exposed to a single dose of irradiation (6 Gy). Then, nephrotoxicity indices, oxidative stress, inflammatory, apoptotic biomarkers, and the histopathological examination were assessed. Also, IGF-1 and CGRP renal expressions were measured. Results: Carvacrol and/or thymol protected kidneys against γ-irradiation-induced acute RN which might be attributed to their antioxidative, anti-inflammatory, and antiapoptotic activities. Moreover, both reserved the γ -irradiation-induced downregulation of CGRP- TNF-α loop in acute RN that might be involved in the pathomechanisms of acute RN. Additionally, in Silico molecular docking simulation of carvacrol and thymol demonstrated promising fitting and binding with CGRP, IGF-1, TNF-α and NF-κB through the formation of hydrogen, hydrophobic and alkyl bonds with binding sites of target proteins which supports the reno-protective properties of carvacrol and thymol. Collectively, our findings open a new avenue for using carvacrol and/or thymol to improve the therapeutic index of γ-irradiation.

2.
Pharmaceutics ; 15(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631278

ABSTRACT

Alzheimer's disease (AD) is a devastating illness with limited therapeutic interventions. The aim of this study is to investigate the pathophysiological mechanisms underlying AD and explore the potential neuroprotective effects of cocoa, either alone or in combination with other nutraceuticals, in an animal model of aluminum-induced AD. Rats were divided into nine groups: control, aluminum chloride (AlCl3) alone, AlCl3 with cocoa alone, AlCl3 with vinpocetine (VIN), AlCl3 with epigallocatechin-3-gallate (EGCG), AlCl3 with coenzyme Q10 (CoQ10), AlCl3 with wheatgrass (WG), AlCl3 with vitamin (Vit) B complex, and AlCl3 with a combination of Vit C, Vit E, and selenium (Se). The animals were treated for five weeks, and we assessed behavioral, histopathological, and biochemical changes, focusing on oxidative stress, inflammation, Wnt/GSK-3ß/ß-catenin signaling, ER stress, autophagy, and apoptosis. AlCl3 administration induced oxidative stress, as evidenced by elevated levels of malondialdehyde (MDA) and downregulation of cellular antioxidants (Nrf2, HO-1, SOD, and TAC). AlCl3 also upregulated inflammatory biomarkers (TNF-α and IL-1ß) and GSK-3ß, leading to increased tau phosphorylation, decreased brain-derived neurotrophic factor (BDNF) expression, and downregulation of the Wnt/ß-catenin pathway. Furthermore, AlCl3 intensified C/EBP, p-PERK, GRP-78, and CHOP, indicating sustained ER stress, and decreased Beclin-1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. These alterations contributed to the observed behavioral and histological changes in the AlCl3-induced AD model. Administration of cocoa, either alone or in combination with other nutraceuticals, particularly VIN or EGCG, demonstrated remarkable amelioration of all assessed parameters. The combination of cocoa with nutraceuticals attenuated the AD-mediated deterioration by modulating interrelated pathophysiological pathways, including inflammation, antioxidant responses, GSK-3ß-Wnt/ß-catenin signaling, ER stress, and apoptosis. These findings provide insights into the intricate pathogenesis of AD and highlight the neuroprotective effects of nutraceuticals through multiple signaling pathways.

3.
Chem Biol Interact ; 382: 110649, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37499997

ABSTRACT

Gastric ulcer is a serious disease that affects millions of individuals worldwide. Alcohol consumption is a major contributor to the disease pathogenesis and ethanol-induced ulcer in rats closely recapitulates the clinical pathology of ulcer. In this study, rats were pretreated with carvacrol (CAR,50 and 100 mg/kg, orally) 1 h before absolute ethanol administration to induce gastric ulcer. CAR prevented ethanol-induced increases in gastric volume and acidity while restored mucin content. The gastro-protective activity of CAR, particularly the higher dose (100 mg/kg), was further supported by histopathological examination, as manifested by reduced gastric lesions. Interestingly, oxidative stress is linked to early stages of ulcer development and progression. In this study, ethanol administration upregulated the levels of ROS-producing enzymes, NADPH oxidase homologs 1 and 4 (Nox1 and Nox4) and lipid peroxides while depleting the antioxidant defense mechanisms, including GSH, Glutathione Peroxidase (GPX) and catalase. Interestingly, these alterations were significantly ameliorated by CAR pretreatment. Additionally, CAR possesses anti-inflammatory and anti-apoptotic activities. Pretreatment with CAR blunted ethanol-induced increases in inflammatory cytokines (NF-κB and TNF-α) and rectified the apoptosis regulator (Bax/Bcl2 ratio) in gastric tissue. Moreover, the docking simulation of CAR illustrated good fitting and interactions with GPX, Nox1 and TNF-α through the formation of hydrogen and hydrophobic (pi-H) bonds with conservative amino acids, thus, further supporting the anti-inflammatory and antioxidant effects underlying the gastroprotective effects of CAR. In conclusion, this study elucidates, using in silico and in vivo models, that the gastroprotective activity of CAR is attributed, at least in part, to its mucin-secretagogue, antioxidative, anti-inflammatory, and anti-apoptotic mechanisms.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Rats , Animals , Antioxidants/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Tumor Necrosis Factor-alpha/metabolism , Ulcer/drug therapy , Ulcer/metabolism , Ulcer/pathology , Anti-Inflammatory Agents/adverse effects , Oxidative Stress , Anti-Ulcer Agents/pharmacology , Glutathione Peroxidase/metabolism , Ethanol/metabolism , Mucins/metabolism , Mucins/pharmacology , Mucins/therapeutic use , Gastric Mucosa
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36986437

ABSTRACT

BACKGROUND: Cisplatin (Cp) is an antineoplastic agent with a dose-limiting nephrotoxicity. Cp-induced nephrotoxicity is characterized by the interplay of oxidative stress, inflammation, and apoptosis. Toll-4 receptors (TLR4) and NLPR3 inflammasome are pattern-recognition receptors responsible for activating inflammatory responses and are assigned to play a significant role with gasdermin (GSDMD) in acute kidney injuries. N-acetylcysteine (NAC) and chlorogenic acid (CGA) have documented nephroprotective effects by suppressing oxidative and inflammatory pathways. Therefore, the current study aimed to investigate the contribution of the upregulation of TLR4/inflammasomes/gasdermin signaling to Cp-induced nephrotoxicity and their modulation by NAC or CGA. METHODS: A single injection of Cp (7 mg/kg, i.p.) was given to Wistar rats. Rats received either NAC (250 mg/kg, p.o.) and/or CGA (20 mg/kg, p.o.) one week before and after the Cp injection. RESULTS: Cp-induced acute nephrotoxicity was evident by the increased blood urea nitrogen and serum creatinine and histopathological insults. Additionally, nephrotoxicity was associated with increased lipid peroxidation, reduced antioxidants, and elevated levels of inflammatory markers (NF-κB and TNF-α) in the kidney tissues. Moreover, Cp upregulated both TLR4/NLPR3/interleukin-1beta (IL-1ß) and caspase-1/GSDMD-signaling pathways, accompanied by an increased Bax/BCL-2 ratio, indicating an inflammatory-mediated apoptosis. Both NAC and/or CGA significantly corrected these changes. CONCLUSIONS: This study emphasizes that inhibition of TLR4/NLPR3/IL-1ß/GSDMD might be a novel mechanism of the nephroprotective effects of NAC or CGA against Cp-induced nephrotoxicity in rats.

6.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422542

ABSTRACT

5-Fluorouracil (5-FU) is an anticancer drug with intestinal mucositis (IM) as a deleterious side effect. Thymol is a monoterpene phenol which has been reported to possess an antioxidant and anti-inflammatory activity versus 5-FU-induced IM. The Notch pathway affects multiple cellular activities, such as cellular proliferation, in addition to inflammatory responses modulation. Accordingly, this work was carried out in order to elucidate the role of the Notch pathway in 5-FU-induced IM and to further elucidate the immunomodulatory protective mechanisms of thymol. Experimental rats were divided randomly into four groups: Control, 5-FU, 5-FU+thymol (60 mg/kg/day), and 5-FU+thymol (120 mg/kg/day). 5-FU was injected intraperitoneally at a dose of 150 mg/kg on days 6 and 7, while thymol was orally administered daily for 11 days. By the end of the study, intestinal tissues were collected for the determination of IL-17, CD4, CD8, Notch1, Hes-1, pSTAT3, and STAT-3 protein expressions. The effect of thymol on 5-FU cytotoxicity was also examined using WST1 assay. 5-FU induced a marked increase in IL-17 levels, along with a marked downregulation of CD4 and the upregulation of CD8, Notch1, Hes-1 protein expressions, and activation of STAT3 in the intestinal tissue when compared with the control group. Thymol ameliorated the changes that occurred in these parameters. Additionally, cytotoxicity testing revealed that thymol augmented the antiproliferative action of 5-FU against breast and colorectal human cancer cell lines. This study was the first to show that the IL-17/Notch1/STAT3 pathway is involved in the molecular mechanism of 5-FU-induced IM, as well as the immunomodulatory activity of thymol.

7.
Biomed Pharmacother ; 155: 113799, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36271575

ABSTRACT

Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1ß, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, ß-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3ß as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Sodium Glutamate , Animals , Male , Rats , Attention Deficit Disorder with Hyperactivity/chemically induced , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/prevention & control , bcl-2-Associated X Protein , beta Catenin/metabolism , Brain-Derived Neurotrophic Factor , Calcium , Caspase 1/metabolism , Dopamine , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Norepinephrine , RNA, Messenger , Saline Solution , Thymol/pharmacology , Thymol/therapeutic use , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Wnt Signaling Pathway
8.
Infect Genet Evol ; 100: 105278, 2022 06.
Article in English | MEDLINE | ID: mdl-35367360

ABSTRACT

The recently emerging coronavirus, severe acute respiratory syndrome coronavirus 2, (SARS-CoV-2) is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Since its discovery in the city of Wahan, China, SARS-CoV-2 has spread rapidly to invade all countries. In addition to its rapid transmission rate, it is characterized by high genetic mutation rates. The aim of this study is to provide an effective method for the isolation and propagation of SARS-CoV-2 in cell lines without any induction of genetic variations. In this study, we isolated SARS-CoV-2 from oro-nasopharyngeal swabs collected from Egyptian patients who were clinically diagnosed with COVID-19. Molecular identification of SARS-CoV-2 was performed by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). The isolated virus was propagated on Vero E6 cells without applying serial viral passages to avoid any variation of the viral genome. The replication and propagation were confirmed by the results of both RT-qPCR and the cytopathic effect (CPE). Moreover, SARS-CoV-2 was completely inactivated chemically using beta-propiolactone (ßPL). Whole genome sequencing (WGS) of the propagated virus was performed in order to investigate mutational patterns. The genome sequences recovered in 2020 (n = 18) were similar to the reference strain, Wuhan-Hu-1, and were clustered as clade 20A. However, the genomic sequences recovered in 2021 (n = 2) were clustered as clade 21J. These two sequences are considered the first Delta (B.1.617.2) variants detected in Egypt. This study provides a reference for researchers in Egypt to isolate and propagate SARS-CoV-2 easily and efficiently. Furthermore, the prevalence of the SARS-CoV-2 delta variant in Egypt necessitates continuous monitoring of the efficacy of the applied treatment protocol and the effectiveness of current vaccines against such variants of concern (VOC).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Egypt/epidemiology , Humans , Pandemics , SARS-CoV-2/genetics
9.
Heliyon ; 8(2): e08864, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35128118

ABSTRACT

COVID-19 is an infectious disease caused by SARS-CoV-2 and has spread globally, resulting in the ongoing coronavirus pandemic. The current study aimed to analyze the clinical and epidemiological features of COVID-19 in Egypt. Oropharyngeal swabs were collected from 197 suspected patients who were admitted to the Army Hospital and confirmation of the positivity was performed by rRT-PCR assay. Whole genomic sequencing was conducted using Illumina iSeq 100® System. The average age of the participants was 48 years, of which 132 (67%) were male. The main clinical symptoms were pneumonia (98%), fever (92%), and dry cough (66%). The results of the laboratory showed that lymphocytopenia (79.2%), decreased levels of haemoglobin (77.7%), increased levels of interleukin 6, C-reactive protein, serum ferritin, and D-dimer (77.2%, 55.3%, 55.3%, and 25.9%, respectively), and leukocytopenia (25.9%) were more common. The CT findings showed that scattered opacities (55.8%) and ground-glass appearance (27.9%) were frequently reported. The recovered validated sequences (n = 144) were submitted to NCBI Virus GenBank. All sequenced viruses have at least 99% identity to Wuhan-Hu-1. All variants were GH clade, B.1 PANGO lineage, and L.GP.YP.HT haplotype. The most predominant subclade was D614G/Q57H/V5F/G823S. Our findings have aided in a deep understanding of COVID-19 evolution and identifying strains with unique mutational patterns in Egypt.

10.
J Biochem Mol Toxicol ; 36(1): e22932, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34665902

ABSTRACT

5-Fluorouracil (5-FU) is a front-line cytotoxic therapy. However, intestinal mucositis is a well-known adverse event of 5-FU, which limits its therapeutic use. Indeed, thymol, which is a monoterpene component of the essential oil derived from thymus, has a potential anti-inflammatory and immunomodulatory activity. Therefore, this study aimed to investigate the potential chemoprotective effect of thymol against 5-FU-induced intestinal mucositis. Rats were either exposed to two doses of 5-FU (150 mg/kg, ip) and/or treated with thymol (60 or 120 mg/kg). Oxidative stress and inflammatory markers, as well as pathological changes, were assessed. 5-FU-induced severe intestinal damages as were evidenced by histopathological changes as well as oxidative and inflammatory responses. Thymol pretreatment inhibited 5-FU-induced oxidative stress by reducing lipid peroxidation and increasing intestinal levels of antioxidant systems. Moreover, inflammatory response markers, such as interleukin-6, prostaglandin E2, and COX-2 were also improved. The immunoblotting analysis also showed that thymol significantly inhibited the 5-FU-induced expression of nuclear factor-κB, tumor necrosis factor-α, and transforming growth factor ß-1 (TGF-ß1), in addition to the suppression of p38 and phosphorylated c-Jun N-terminal kinases (p-JNK) mitogen-activated protein kinase proteins' expressions. Our study is the first to demonstrate the promising protective effect of thymol against 5-FU-induced intestinal mucositis through inhibition of oxidative, inflammatory pathways, and suppression of TGF-ß/p38/p-JNK signaling.


Subject(s)
Fluorouracil/adverse effects , Intestinal Diseases , MAP Kinase Signaling System/drug effects , Mucositis , NF-kappa B/metabolism , Thymol/pharmacology , Transforming Growth Factor beta/metabolism , Animals , Chymases , Fluorouracil/pharmacology , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Rats, Wistar
11.
J Pharm Pharmacol ; 73(9): 1250-1261, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-33847358

ABSTRACT

OBJECTIVES: Diabetic nephropathy (DN) is one of the most important complications of diabetes mellitus and it is considered as a principal cause for end-stage renal failure. Ganoderma lucidum (GL) has been studied for its reno-protective effect against different kidney injury models. The aim of our study is to investigate the mechanisms by which GL can improve kidney injury and consequent renal inflammation and fibrosis. METHODS: GL either in a low dose (250 mg/kg, i.p.) or high dose (500 mg/kg, i.p.) was administered to DN rat model, and nephropathy indices were investigated. KEY FINDINGS: GL treatment significantly down-regulated kidney injury molecule-1 (KIM-1) gene expression and inhibited TLR-4 (Toll-like receptor-4)/NFκB (nuclear factor kappa B) signalling pathway. As well, GL treatment significantly decreased the pro-inflammatory mediator; IL-1ß (interleukin-1 beta) level and fibrosis-associated growth factors; FGF-23 (fibroblast growth factor-23) and TGFß-1 (transforming growth factor beta-1) levels. In addition, GL remarkably inhibited (Bax) the pro-apoptotic protein and induced (Bcl-2) the anti-apoptotic protein expression in kidneys. Moreover, GL treatment significantly alleviates kidney injury indicated by correcting the deteriorated kidney function and improving oxidative stress status in DN rats. CONCLUSIONS: GL significantly improved renal function indices through dose-dependent kidney function restoration, oxidative stress reduction, down-regulation of gene expression of KIM-1 and TLR4/NFκB signalling pathway blockage with subsequent alleviation of renal inflammation and fibrosis.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Kidney/drug effects , NF-kappa B/metabolism , Reishi , Toll-Like Receptor 4/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Adhesion Molecules/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Down-Regulation , Fibroblast Growth Factor-23/metabolism , Fibrosis , Inflammation/drug therapy , Inflammation/metabolism , Kidney/metabolism , Kidney/pathology , Male , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor RelA/metabolism
12.
Drug Des Devel Ther ; 14: 2335-2353, 2020.
Article in English | MEDLINE | ID: mdl-32606602

ABSTRACT

PURPOSE: Drug-induced liver injury (DILI) is the most common cause of acute liver failure. The aim of this study was to investigate the molecular mechanisms by which Ganoderma lucidum mushroom (GLM) may ameliorate cisplatin (CP)-induced hepatotoxicity theoretically and experimentally. MATERIALS AND METHODS: Thirty-six male Sprague-Dawley (SD) rats were divided into six groups, two of them are normal and Ganoderma lucidum control groups. Liver injury was induced by a single dose of CP (12 mg/kg i.p) in four groups, one of them is CP control group. Besides cisplatin injection in day 1, rats in groups (4-6) were subjected to GLM (500 mg/kg/day) either every other day or daily oral dose or via i.p injection for 10 consecutive days. RESULTS: In this study, GLM supplementation caused significant reduction of elevated high-mobility group box-1 (HMGB-1) with a concurrent decline in TNF-α and upregulation of IL-10 compared to the CP group (P<0.05). The histopathological and fibrosis evaluation significantly confirmed the improvement upon simultaneous treatment with GLM. Moreover, immunohistochemical examination also confirmed the recovery following GLM treatment indicated by downregulation of NF-κB, p53 and caspase-3 along with upsurge of B-cell lymphoma 2 (Bcl-2) expression (P<0.05). GLM treatment significantly decreased serum levels of hepatic injury markers; ALT, AST, T. bilirubin as well as oxidative stress markers; MDA and H2O2 with a concomitant increase in hepatic GSH and SOD. Also, the performed docking simulation of ganoderic acid exhibited good fitting and binding with HMGB-1 through hydrogen bond formation with conservative amino acids which gives a strong evidence for its hepatoprotective effect and may interpret the effect of Ganoderma lucidum. CONCLUSION: GLM attenuated hepatic injury through downregulation of HMGB-1/NF-kB and caspase-3 resulted in modulation of the induced oxidative stress and the subsequent cross-talk between the inflammatory and apoptotic cascade indicating its promising role in DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Cisplatin/pharmacology , HMGB1 Protein/metabolism , Reishi , Animals , Apoptosis , Chemical and Drug Induced Liver Injury/pathology , Cisplatin/administration & dosage , Male , Molecular Docking Simulation , Oxidative Stress , Rats , Rats, Sprague-Dawley
13.
Oxid Med Cell Longev ; 2020: 4932587, 2020.
Article in English | MEDLINE | ID: mdl-32695255

ABSTRACT

BACKGROUND: Cisplatin (cis-diaminedichloroplatinum, CDDP) is a broad-spectrum antineoplastic agent. However, CDDP has been blamed for its nephrotoxicity, which is the main dose-limiting adverse effect. Ganoderma lucidum (GL), a medicinal mushroom, has antioxidant and inflammatory activities. Therefore, this study is aimed at finding out the potential nephroprotection of GL against CDDP-induced nephrotoxicity in rats and the possible molecular mechanisms including the EGFR downstream signaling, apoptosis, and autophagy. METHODS: Rats were given GL (500 mg/kg) for 10 days and a single injection of CDDP (12 mg/kg, i.p). RESULTS: Nephrotoxicity was evidenced by a significant increase in renal indices and oxidative stress markers. Additionally, CDDP showed a plethora of inflammatory and apoptotic responses as evidenced by a profound increase of HMGB-1, NF-κB, and caspase-3 expressions, whereas administration of GL significantly improved all these indices as well as the histopathological insults. Renal expression of EGFR showed a similar trend after GL administration. Furthermore, activation of autophagy protein, LC3 II, was found to be involved in GL-mediated nephroprotection correlated with the downregulation of apoptotic signaling, caspase-3 and terminal deoxynucleotidyl transferase (TDT) renal expressions. CONCLUSION: These results suggest that GL might have improved CDDP-induced nephrotoxicity through antioxidant, anti-inflammatory, and autophagy-mediated apoptosis mechanisms and that inhibition of EGFR signaling might be involved in nephroprotection.


Subject(s)
Anti-Inflammatory Agents/adverse effects , Cisplatin/adverse effects , Drug-Related Side Effects and Adverse Reactions/prevention & control , Kidney Diseases/prevention & control , Kidney/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Apoptosis/drug effects , Caspase 3/metabolism , Cisplatin/administration & dosage , ErbB Receptors/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , Kidney/pathology , Kidney Diseases/etiology , Male , NF-kappa B/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Reishi , Signal Transduction
14.
Life Sci ; 253: 117581, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32209424

ABSTRACT

AIMS: Cisplatin (CDDP) is an effective antineoplastic agent, however, its serious nephrotoxicity limits therapeutic use. Human growth hormone (hGH) has proved antioxidant and anti-inflammatory activities. The present study aimed to investigate the nephroprotective effects of hGH against CDDP-induced nephrotoxicity and the mechanisms underlying this nephroprotection. MAIN METHODS: Male albino rats injected with CDDP (7 mg/kg) and nephrotoxicity indices, oxidative stress and inflammatory biomarkers (high mobility group box protein-1 (HMGB-1), soluble epoxide hydrolase (sEH), and nuclear factor-kappa B (NF-κB)) were assessed. Also, insulin-like growth factor-1 (IGF-1) and Nuclear factor-erythroid-2 (Nrf2)/heme oxygenase-1 (HO-1) pathway were assessed. KEY FINDINGS: hGH (1 mg/kg) improved kidney function and antioxidant systems and showed intact renal tubular epithelium. Cisplatin upregulated the HMGB-1/NF-κB and downregulated Nrf2/HO-1 pathways which were reversed by hGH and aligned with increased renal IGF-1 expression. Also, IGF-1/sEH crosstalk might be involved in hGH nephroprotection. Moreover, hGH downregulated HSP70 and caspase-3 expressions. SIGNIFICANCE: these results concluded that hGH can attenuate the inflammation and oxidative stress attained by CDDP probably through inhibition of Nrf2/HO-1 pathway. We also suggested that Keap1/Nrf2-mediated upregulation of the antioxidant HO-1 might inhibit HMGB-1/NF-κB signaling and thus provide the principal protection mechanism offered by hGH against CDDP-induced kidney injury.


Subject(s)
Acute Kidney Injury/prevention & control , Cisplatin/adverse effects , Growth Hormone/metabolism , Heme Oxygenase-1/metabolism , Insulin-Like Growth Factor I/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/metabolism , Antineoplastic Agents/adverse effects , Antineoplastic Agents/metabolism , Antioxidants/adverse effects , Antioxidants/pharmacology , Caspase 3/metabolism , Cisplatin/metabolism , Disease Models, Animal , Epoxide Hydrolases/metabolism , Growth Hormone/pharmacology , HMGB Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Human Growth Hormone , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats , Signal Transduction
15.
Oxid Med Cell Longev ; 2019: 3173745, 2019.
Article in English | MEDLINE | ID: mdl-31531182

ABSTRACT

Premature ovarian failure (POF) is a common cause of infertility in premenopausal women who are unavoidably exposed to cytotoxic therapy. Radiotherapy is one of the most effective cytotoxic treatments. However, the radiosensitivity of ovarian tissues limits its therapeutic outcome and results in the depletion of the primordial follicle and loss of fertility. Therefore, the need for an effective radioprotective therapy is evident especially when none of the current clinically used modalities for radioprotection succeeds efficiently. The present study investigated the potential radioprotective effect of carvacrol (CAR) (80 mg) or thymol (80 mg) on gamma- (γ-) irradiation-induced ovarian damage as well as their role in the cross-talk between IGF-1 and TNF-α signaling and antioxidative activity. In immature female Wister rats, a single dose of whole-body irradiation (3.2 Gy, LD20) produced considerable ovarian damage, which was evident by histopathological findings and hormonal changes. Interestingly, pretreatment with CAR or thymol significantly enhanced the follicular development and restored the anti-Mullerian hormone (AMH), E2, and FSH levels. Both essential oils improved the irradiation-mediated oxidative stress and reduction in proliferating cell nuclear antigen (PCNA) expression. Moreover, irradiated rats exhibited an inverse relationship between IGF-1 and TNF-α levels two days post irradiation, which was further inverted by the pretreatment with CAR and thymol and ought to contribute in their radioprotective mechanisms. In conclusion, CAR and thymol showed a radioprotective effect and rescued the ovarian reserve mainly through counteracting oxidative stress and the dysregulated cross-talk between IGF-1 and TNF-α.


Subject(s)
Cymenes/pharmacology , Gamma Rays/adverse effects , Insulin-Like Growth Factor I/metabolism , Primary Ovarian Insufficiency/blood , Radiation-Protective Agents/pharmacology , Signal Transduction , Thymol/pharmacology , Tumor Necrosis Factor-alpha/blood , Animals , Female , Primary Ovarian Insufficiency/etiology , Radiotherapy/adverse effects , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/radiation effects
16.
Sci Rep ; 6: 29857, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27417335

ABSTRACT

Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury.


Subject(s)
Acute Kidney Injury/drug therapy , Calcitonin Gene-Related Peptide/genetics , Cisplatin/adverse effects , Indoles/administration & dosage , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Antioxidants/administration & dosage , Apoptosis/drug effects , Calcitonin Gene-Related Peptide/metabolism , Cisplatin/administration & dosage , Gene Expression Regulation/drug effects , Glutathione/metabolism , Humans , Insulin-Like Growth Factor I/genetics , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Rats
17.
PLoS One ; 10(10): e0140055, 2015.
Article in English | MEDLINE | ID: mdl-26465611

ABSTRACT

Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.


Subject(s)
Growth Hormone/pharmacology , Ovarian Follicle/drug effects , Ovarian Follicle/radiation effects , Radiation Injuries , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Biomarkers , Body Weight , Female , Gamma Rays/adverse effects , Human Growth Hormone/pharmacology , Humans , Insulin-Like Growth Factor I/metabolism , Male , Organ Size , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Ovary/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Rats , Receptor, IGF Type 1/metabolism
18.
Endocrinology ; 154(10): 3888-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23798597

ABSTRACT

Radiotherapy is one of the most common and effective cancer treatments. However, it has a profound impact on ovarian function, leading to premature ovarian failure. With the hope of preserving fertility in cancer survivors, the need for an effective radioprotective therapy is evident. The present study investigated the mechanism of the potential radioprotective effect of tamoxifen (TAM) on γ-irradiation-induced ovarian failure on experimental rats and the impact of the IGF-1 in the underlying protective mechanisms. Female Sprague Dawley rats were either exposed to single whole-body irradiation (3.2 Gy; lethal dose [LD20]) and/or treated with TAM (1 mg/kg). γ-Irradiation caused an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (proliferating cell nuclear antigen), and oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1 receptor axis expression was assessed using real-time RT-PCR and immunolocalization techniques. Furthermore, fertility assessment was performed. TAM significantly enhanced follicular development and restored the anti-Mullerian hormone level. Moreover, it ameliorated the deleterious effects of irradiation on oxidative stress, proliferating cell nuclear antigen expression, and apoptosis. Interestingly, TAM was shown to enhance the ovarian IGF-1 but not IGF-1 receptor, a property that contributed significantly to its radioprotective mechanisms. Finally, TAM regained the fertility that was lost after irradiation. In conclusion, TAM showed a radioprotective effect and saved the ovarian reserve and fertility through increasing anti-Mullerian hormone and the local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Ovary/drug effects , Primary Ovarian Insufficiency/prevention & control , Radiation-Protective Agents/therapeutic use , Selective Estrogen Receptor Modulators/therapeutic use , Tamoxifen/therapeutic use , Up-Regulation/drug effects , Animals , Anti-Mullerian Hormone/blood , Apoptosis/drug effects , Apoptosis/radiation effects , Biomarkers/blood , Biomarkers/metabolism , Female , Gamma Rays , Infertility, Female/etiology , Infertility, Female/prevention & control , Insulin-Like Growth Factor I/biosynthesis , Insulin-Like Growth Factor I/genetics , Ovary/metabolism , Ovary/pathology , Ovary/radiation effects , Oxidative Stress/drug effects , Primary Ovarian Insufficiency/etiology , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , Random Allocation , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Whole-Body Irradiation/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...