Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(24): 4047-4062, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098451

ABSTRACT

Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Leukemia, Myeloid, Acute/pathology , Receptors, Cell Surface/metabolism , Myeloid Cells/metabolism , Receptors, Immunologic/metabolism , Antigens, CD/metabolism
2.
Front Immunol ; 13: 865503, 2022.
Article in English | MEDLINE | ID: mdl-35757769

ABSTRACT

Tuberculosis is a leading cause of death in mankind due to infectious agents, and Mycobacterium tuberculosis (Mtb) infects and survives in macrophages (MФs). Although MФs are a major niche, myeloid-derived suppressor cells (MDSCs) are an alternative site for pathogen persistence. Both MФs and MDSCs express varying levels of leukocyte immunoglobulin-like receptor B (LILRB), which regulate the myeloid cell suppressive function. Herein, we demonstrate that antagonism of LILRB2 by a monoclonal antibody (mab) induced a switch of human MDSCs towards an M1-macrophage phenotype, increasing the killing of intracellular Mtb. Mab-mediated antagonism of LILRB2 alone and its combination with a pharmacological blockade of SHP1/2 phosphatase increased proinflammatory cytokine responses and phosphorylation of ERK1/2, p38 MAPK, and NF-kB in Mtb-infected MDSCs. LILRB2 antagonism also upregulated anti-mycobacterial iNOS gene expression and an increase in both nitric oxide and reactive oxygen species synthesis. Because genes associated with the anti-mycobacterial function of M1-MФs were enhanced in MDSCs following mab treatment, we propose that LILRB2 antagonism reprograms MDSCs from an immunosuppressive state towards a pro-inflammatory phenotype that kills Mtb. LILRB2 is therefore a novel therapeutic target for eradicating Mtb in MDSCs.


Subject(s)
Membrane Glycoproteins , Mycobacterium tuberculosis , Myeloid-Derived Suppressor Cells , Receptors, Immunologic , Tuberculosis, Lymph Node , Cytokines/immunology , Humans , Macrophages/immunology , Membrane Glycoproteins/immunology , Mycobacterium tuberculosis/immunology , Myeloid-Derived Suppressor Cells/immunology , Receptors, Immunologic/immunology
3.
Cancer Res Commun ; 2(8): 884-893, 2022 08.
Article in English | MEDLINE | ID: mdl-36923308

ABSTRACT

Tumors accumulated with infiltrated immune cells (hot tumors) have a higher response rate to immune checkpoint blockade, when compared with those with minimal T-cell infiltration (cold tumors). We report here that patients with lung cancer with different racial backgrounds harbored distinct immune cell profiles in the tumor microenvironment. Compared with African Americans (AA), Caucasian Americans (CA) exhibited increased immune cell infiltration and vasculature, and increased survival. Changes of survival and immune profile were most pronounced among active smokers and nonsmokers, compared with former smokers and total patients. Neighborhood analysis showed that immune cells accumulated around cancer cells in CAs but not AAs. Our findings reveal intrinsic biological differences between AA and CA patients with lung cancer, suggesting that treatment plans should be tailored for patients with different racial backgrounds. Significance: We report biological racial differences among patients with lung cancer where Caucasians present a hot tumor microenvironment compared with cold tumor in AAs. Treatment plans should be customized to maximize therapeutic outcomes.


Subject(s)
Lung Neoplasms , Racial Groups , Humans , Black or African American , Lung Neoplasms/ethnology , Lung Neoplasms/immunology , Tumor Microenvironment/immunology , White
4.
Front Immunol ; 11: 1842, 2020.
Article in English | MEDLINE | ID: mdl-32983100

ABSTRACT

Tumor-mediated regulation of the host immune system involves an intricate signaling network that results in the tumor's inherent survival benefit. Myeloid cells are central in orchestrating the mechanisms by which tumors escape immune detection and continue their proliferative programming. Myeloid cell activation has historically been classified using a dichotomous system of classical (M1-like) and alternative (M2-like) states, defining general pro- and anti-inflammatory functions, respectively. Explosions in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro- and anti-inflammatory states with different combinations of tissue- and disease-specific phenotypic and functional markers. These new definitions have allowed researchers to target specific subsets of disease-propagating myeloid cells in order to modify or arrest the natural progression of the associated disease, especially in the context of tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor initiation and maintenance, and strategies to reprogram their phenotypic and functional fate, thereby disabling the network that benefits tumor survival.


Subject(s)
Myeloid Cells/immunology , Neoplasms/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Humans
6.
J Clin Invest ; 128(12): 5647-5662, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30352428

ABSTRACT

Tumor-associated myeloid cells maintain immunosuppressive microenvironments within tumors. Identification of myeloid-specific receptors to modulate tumor-associated macrophage and myeloid-derived suppressor cell (MDSC) functions remains challenging. The leukocyte immunoglobulin-like receptor B (LILRB) family members are negative regulators of myeloid cell activation. We investigated how LILRB targeting could modulate tumor-associated myeloid cell function. LILRB2 antagonism inhibited receptor-mediated activation of SHP1/2 and enhanced proinflammatory responses. LILRB2 antagonism also inhibited AKT and STAT6 activation in the presence of M-CSF and IL-4. Transcriptome analysis revealed that LILRB2 antagonism altered genes involved in cell cytoskeleton remodeling, lipid/cholesterol metabolism, and endosomal sorting pathways, as well as changed differentiation gene networks associated with inflammatory myeloid cells as opposed to their alternatively activated phenotype. LILRB2 blockade effectively suppressed granulocytic MDSC and Treg infiltration and significantly promoted in vivo antitumor effects of T cell immune checkpoint inhibitors. Furthermore, LILRB2 blockade polarized tumor-infiltrating myeloid cells from non-small cell lung carcinoma tumor tissues toward an inflammatory phenotype. Our studies suggest that LILRB2 can potentially act as a myeloid immune checkpoint by reprogramming tumor-associated myeloid cells and provoking antitumor immunity.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasm Proteins/immunology , Receptors, Immunologic/immunology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Cytoskeleton/genetics , Cytoskeleton/immunology , Cytoskeleton/pathology , Gene Regulatory Networks/immunology , Lipid Metabolism/genetics , Lipid Metabolism/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Myeloid-Derived Suppressor Cells/pathology , Neoplasm Proteins/genetics , Receptors, Immunologic/genetics
7.
J Immunol ; 201(6): 1727-1734, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30068593

ABSTRACT

Glatiramer acetate (GA; Copaxone) is a copolymer therapeutic that is approved by the Food and Drug Administration for the relapsing-remitting form of multiple sclerosis. Despite an unclear mechanism of action, studies have shown that GA promotes protective Th2 immunity and stimulates release of cytokines that suppress autoimmunity. In this study, we demonstrate that GA interacts with murine paired Ig-like receptor B (PIR-B) on myeloid-derived suppressor cells and suppresses the STAT1/NF-κB pathways while promoting IL-10/TGF-ß cytokine release. In inflammatory bowel disease models, GA enhanced myeloid-derived suppressor cell-dependent CD4+ regulatory T cell generation while reducing proinflammatory cytokine secretion. Human monocyte-derived macrophages responded to GA by reducing TNF-α production and promoting CD163 expression typical of alternative maturation despite the presence of GM-CSF. Furthermore, GA competitively interacts with leukocyte Ig-like receptors B (LILRBs), the human orthologs of PIR-B. Because GA limited proinflammatory activation of myeloid cells, therapeutics that target LILRBs represent novel treatment modalities for autoimmune indications.


Subject(s)
Antigens, CD/immunology , Glatiramer Acetate/pharmacology , Myeloid-Derived Suppressor Cells/immunology , Receptors, Immunologic/immunology , Animals , Antigens, CD/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cytokines/genetics , Cytokines/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid-Derived Suppressor Cells/pathology , NF-kappa B/genetics , NF-kappa B/immunology , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th2 Cells/immunology , Th2 Cells/pathology
8.
J Leukoc Biol ; 102(2): 351-360, 2017 08.
Article in English | MEDLINE | ID: mdl-28351852

ABSTRACT

Myeloid-derived suppressor cells (MDSCs), a population of immature myeloid cells expanded and accumulated in tumor-bearing mice and in patients with cancer, have been shown to mediate immune suppression and to promote tumor progression, thereby, posing a major hurdle to the success of immune-activating cancer therapies. MDSCs, like their healthy counterparts, such as monocytes/macrophages and granulocytes, express an array of costimulatory and coinhibitory molecules as well as myeloid activators and inhibitory receptors, such as leukocyte immunoglobulin-like receptors (LILR) A and B. This review summarizes current findings on the LILR family members in various diseases, their potential roles in the pathogenesis, and possible strategies to revert or enhance the suppressive function of MDSCs for the benefit of patients by targeting LILRs.


Subject(s)
Myeloid-Derived Suppressor Cells/immunology , Receptors, Immunologic/immunology , Animals , Humans , Immunotherapy/methods , Tumor Escape/immunology
9.
Biochem Biophys Res Commun ; 453(2): 243-53, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-24971539

ABSTRACT

Voltage-gated ion channels are transmembrane proteins that regulate electrical excitability in cells and are essential components of the electrically active tissues of nerves, muscle and the heart. Potassium channels are one of the largest subfamilies of voltage sensitive channels and are among the most-studied of the voltage-gated ion channels. Voltage-gated channels can be glycosylated and changes in the glycosylation pattern can affect ion channel function, leading to neurological and neuromuscular disorders and congenital disorders of glycosylation (CDG). Alterations in glycosylation can also be acquired and appear to play a role in development and aging. Recent studies have focused on the impact of glycosylation and sialylation on ion channels, particularly for voltage-gated potassium and sodium channels. The terminal step of sialylation often affects channel activation and inactivation kinetics. The presence of sialic acids on O or N-glycans can alter the gating mechanism and cause conformational changes in the voltage-sensing domains due to sialic acid's negative charges. This manuscript will provide an overview of sialic acids, potassium and sodium channel function, and the impact of sialylation on channel activation and deactivation.


Subject(s)
Ion Channels/chemistry , Ion Channels/metabolism , Aging/metabolism , Animals , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Glycosylation , Growth and Development/physiology , Humans , Ion Channel Gating , Ion Channels/genetics , Models, Biological , Mutation , N-Acetylneuraminic Acid/metabolism , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...