Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Med Genet ; 57(6): 414-421, 2020 06.
Article in English | MEDLINE | ID: mdl-32005695

ABSTRACT

BACKGROUND: Deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to an individual's clinical phenotype is challenging. METHODS: Here, as an example of this common phenomenon, we analysed 41 patients with simple deletions of ~177 to ~2000 kb affecting one allele of the well-characterised, gene dense, distal region of chromosome 16 (16p13.3), referred to as ATR-16 syndrome. We characterised deletion extents and screened for genetic background effects, telomere position effect and compensatory upregulation of hemizygous genes. RESULTS: We find the risk of developmental and neurological abnormalities arises from much smaller distal chromosome 16 deletions (~400 kb) than previously reported. Beyond this, the severity of ATR-16 syndrome increases with deletion size, but there is no evidence that critical regions determine the developmental abnormalities associated with this disorder. Surprisingly, we find no evidence of telomere position effect or compensatory upregulation of hemizygous genes; however, genetic background effects substantially modify phenotypic abnormalities. CONCLUSIONS: Using ATR-16 as a general model of disorders caused by CNVs, we show the degree to which individuals with contiguous gene syndromes are affected is not simply related to the number of genes deleted but depends on their genetic background. We also show there is no critical region defining the degree of phenotypic abnormalities in ATR-16 syndrome and this has important implications for genetic counselling.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Copy Number Variations/genetics , Intellectual Disability/genetics , Monosomy/genetics , alpha-Thalassemia/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Female , Gene Deletion , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Monosomy/diagnosis , Monosomy/pathology , Phenotype , alpha-Thalassemia/diagnosis , alpha-Thalassemia/pathology
3.
Cell Stem Cell ; 24(4): 579-591.e12, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30853557

ABSTRACT

Heart disease is a paramount cause of global death and disability. Although cardiomyocyte death plays a causal role and its suppression would be logical, no clinical counter-measures target the responsible intracellular pathways. Therapeutic progress has been hampered by lack of preclinical human validation. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is activated in failing human hearts and relevant rodent models. Using human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) and MAP4K4 gene silencing, we demonstrate that death induced by oxidative stress requires MAP4K4. Consequently, we devised a small-molecule inhibitor, DMX-5804, that rescues cell survival, mitochondrial function, and calcium cycling in hiPSC-CMs. As proof of principle that drug discovery in hiPSC-CMs may predict efficacy in vivo, DMX-5804 reduces ischemia-reperfusion injury in mice by more than 50%. We implicate MAP4K4 as a well-posed target toward suppressing human cardiac cell death and highlight the utility of hiPSC-CMs in drug discovery to enhance cardiomyocyte survival.


Subject(s)
Doxorubicin/pharmacology , Infarction/drug therapy , Infarction/pathology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Hydrogen Peroxide/pharmacology , Induced Pluripotent Stem Cells/cytology , Infarction/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
4.
Curr Top Dev Biol ; 109: 171-247, 2014.
Article in English | MEDLINE | ID: mdl-24947238

ABSTRACT

Heart failure is one of the paramount global causes of morbidity and mortality. Despite this pandemic need, the available clinical counter-measures have not altered substantially in recent decades, most notably in the context of pharmacological interventions. Cell death plays a causal role in heart failure, and its inhibition poses a promising approach that has not been thoroughly explored. In previous approaches to target discovery, clinical failures have reflected a deficiency in mechanistic understanding, and in some instances, failure to systematically translate laboratory findings toward the clinic. Here, we review diverse mouse models of heart failure, with an emphasis on those that identify potential targets for pharmacological inhibition of cell death, and on how their translation into effective therapies might be improved in the future.


Subject(s)
Cell Communication/physiology , Cell Survival/physiology , Disease Models, Animal , Drug Discovery/methods , Heart Failure/drug therapy , Heart Failure/physiopathology , Models, Cardiovascular , Signal Transduction/physiology , Animals , Apoptosis/physiology , Autophagy/physiology , Drug Discovery/trends , Mice , Necrosis/physiopathology , Protein Kinases/genetics , Protein Kinases/metabolism
5.
J Biol Chem ; 287(2): 1545-55, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22128155

ABSTRACT

FOXO3a is a forkhead transcription factor that regulates a multitude of important cellular processes, including proliferation, apoptosis, differentiation, and metabolism. Doxorubicin treatment of MCF-7 breast carcinoma cells results in FOXO3a nuclear relocation and the induction of the stress-activated kinase p38 MAPK. Here, we studied the potential regulation of FOXO3a by p38 in response to doxorubicin. Co-immunoprecipitation studies in MCF-7 cells demonstrated a direct interaction between p38 and FOXO3a. We also showed that p38 can bind and phosphorylate a recombinant FOXO3a directly in vitro. HPLC-coupled phosphopeptide mapping and mass spectrometric analyses identified serine 7 as a major site for p38 phosphorylation. Using a phosphorylated Ser-7 FOXO3a antibody, we demonstrated that FOXO3a is phosphorylated on Ser-7 in response to doxorubicin. Immunofluorescence staining studies showed that upon doxorubicin treatment, the wild-type FOXO3a relocalized to the nucleus, whereas the phosphorylation-defective FOXO3a (Ala-7) mutant remained largely in the cytoplasm. Treatment with SB202190 also inhibits the doxorubicin-induced FOXO3a Ser-7 phosphorylation and nuclear accumulation in MCF-7 cells. In addition, doxorubicin caused the nuclear translocation of FOXO3a in wild-type but not p38-depleted mouse fibroblasts. Together, our results suggest that p38 phosphorylation of FOXO3a on Ser-7 is essential for its nuclear relocalization in response to doxorubicin.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Cell Nucleus/metabolism , Doxorubicin/pharmacology , Forkhead Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Nucleus/genetics , Enzyme Inhibitors/pharmacology , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , HEK293 Cells , Humans , Imidazoles/pharmacology , Mice , Mice, Knockout , Mutation, Missense , Phosphorylation/drug effects , Phosphorylation/genetics , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...