Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 12(4): 478-490, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38289260

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma targeting B-cell maturation antigen (BCMA) induces high overall response rates. However, relapse still occurs and novel strategies for targeting multiple myeloma cells using CAR T-cell therapy are needed. SLAMF7 (also known as CS1) and CD38 on tumor plasma cells represent potential alternative targets for CAR T-cell therapy in multiple myeloma, but their expression on activated T cells and other hematopoietic cells raises concerns about the efficacy and safety of such treatments. Here, we used CRISPR/Cas9 deletion of the CD38 gene in T cells and developed DCAR, a double CAR system targeting CD38 and CS1 through activation and costimulation receptors, respectively. Inactivation of CD38 enhanced the anti-multiple myeloma activity of DCAR T in vitro. Edited DCAR T cells showed strong in vitro and in vivo responses specifically against target cells expressing both CD38 and CS1. Furthermore, we provide evidence that, unlike anti-CD38 CAR T-cell therapy, which elicited a rapid immune reaction against hematopoietic cells in a humanized mouse model, DCAR T cells showed no signs of toxicity. Thus, DCAR T cells could provide a safe and efficient alternative to anti-BCMA CAR T-cell therapy to treat patients with multiple myeloma.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Animals , Mice , Humans , Multiple Myeloma/pathology , Receptors, Chimeric Antigen/metabolism , Receptors, Antigen, T-Cell , Neoplasm Recurrence, Local , T-Lymphocytes , Immunotherapy, Adoptive , Signaling Lymphocytic Activation Molecule Family
2.
Diabetes ; 69(12): 2678-2690, 2020 12.
Article in English | MEDLINE | ID: mdl-32928873

ABSTRACT

The antigenic peptides processed by ß-cells and presented through surface HLA class I molecules are poorly characterized. Each HLA variant (e.g., the most common being HLA-A2 and HLA-A3) carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring ß-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of ß-cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8+ T cells. Several peptides were recognized by CD8+ T cells within a narrow frequency (1-50/106), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neoepitopes, generated either via peptide cis-splicing or mRNA splicing (e.g., secretogranin-5 [SCG5]-009). As reported for HLA-A2-restricted peptides, several epitopes originated from ß-cell granule proteins (e.g., SCG3, SCG5, and urocortin-3). Similarly, H-2Kd-restricted CD8+ T cells recognizing the murine orthologs of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/scid recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.


Subject(s)
Chromogranins/metabolism , Diabetes Mellitus, Type 1/metabolism , Adult , Alternative Splicing , Animals , CD8-Positive T-Lymphocytes , Case-Control Studies , Chromogranins/genetics , Computer Simulation , Data Mining , Diabetes Mellitus, Type 1/genetics , Epitopes , Female , Gene Expression Regulation , HLA-A3 Antigen , Humans , Insulin , Male , Mice , Mice, Inbred NOD , Neuroendocrine Secretory Protein 7B2/genetics , Neuroendocrine Secretory Protein 7B2/metabolism , Protein Binding , RNA, Messenger/genetics , Urocortins/genetics , Urocortins/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...