Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
medRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38586023

ABSTRACT

Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), enables to infer if brain networks are connected to lesions, and could be a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain networks. Methods & results: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in predicting cognitive function was compared using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention and executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance. Conclusion: Measures of WMH-related brain network connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, particularly in attentionrelated brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.

2.
JAMA Neurol ; 81(5): 471-480, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38526486

ABSTRACT

Importance: Human brain development and maintenance is under both genetic and environmental influences that likely affect later-life dementia risk. Objective: To examine environmental influences by testing whether time-dependent secular differences occurred in cranial and brain volumes and cortical thickness over birth decades spanning 1930 to 1970. Design, Setting, and Participants: This cross-sectional study used data from the community-based Framingham Heart Study cohort for participants born in the decades 1930 to 1970. Participants did not have dementia or history of stroke and had magnetic resonance imaging (MRI) obtained from March 18, 1999, to November 15, 2019. The final analysis dataset was created in October 2023. Exposure: Years of birth ranging from 1925 to 1968. Main Measures: Cross-sectional analysis of intracranial, cortical gray matter, white matter, and hippocampal volumes as well as cortical surface area and cortical thickness. The secular measure was the decade in which the participant was born. Covariates included age at MRI and sex. Results: The main study cohort consisted of 3226 participants with a mean (SD) age of 57.7 (7.8) years at the time of their MRI. A total of 1706 participants were female (53%) and 1520 (47%) were male. The birth decades ranged from the 1930s to 1970s. Significant trends for larger intracranial, hippocampal, and white matter volumes and cortical surface area were associated with progressive birth decades. Comparing the 1930s birth decade to the 1970s accounted for a 6.6% greater volume (1234 mL; 95% CI, 1220-1248, vs 1321 mL; 95% CI, 1301-1341) for ICV, 7.7% greater volume (441.9 mL; 95% CI, 435.2-448.5, vs 476.3 mL; 95% CI, 467.0-485.7) for white matter, 5.7% greater value (6.51 mL; 95% CI, 6.42-6.60, vs 6.89 mL; 95% CI, 6.77-7.02) for hippocampal volume, and a 14.9% greater value (1933 cm2; 95% CI, 1908-1959, vs 2222 cm2; 95% CI, 2186-2259) for cortical surface area. Repeat analysis applied to a subgroup of 1145 individuals of similar age range born in the 1940s (mean [SD] age, 60.0 [2.8] years) and 1950s (mean [SD] age, 59.0 [2.8] years) resulted in similar findings. Conclusion and Relevance: In this study, secular trends for larger brain volumes suggested improved brain development among individuals born between 1930 and 1970. Early life environmental influences may explain these results and contribute to the declining dementia incidence previously reported in the Framingham Heart Study cohort.


Subject(s)
Magnetic Resonance Imaging , Humans , Female , Male , Middle Aged , Cross-Sectional Studies , Aged , Organ Size , Brain/diagnostic imaging , Brain/pathology , Cohort Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Hippocampus/diagnostic imaging , Hippocampus/anatomy & histology , Hippocampus/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , White Matter/diagnostic imaging , White Matter/pathology
3.
Hypertension ; 81(5): 1145-1155, 2024 May.
Article in English | MEDLINE | ID: mdl-38487873

ABSTRACT

BACKGROUND: High blood pressure (BP) in middle-aged and older adults is associated with a brain white matter (WM) microstructural abnormality. However, little evidence is available in healthy young adults. We investigated the associations between high BP and WM microstructural integrity in young adults. METHODS: This study included 1015 healthy young adults (542 women, 22-37 years) from the Human Connectome Project. Brachial systolic and diastolic BP were measured using a semiautomatic or manual sphygmomanometer. Diffusion-weighted magnetic resonance imaging was acquired to obtain diffusion tensor imaging metrics of free water (FW) content, FW-corrected WM fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity. Using whole-brain voxel-wise linear regression models and ANCOVA, we examined associations of BP and hypertension stage with diffusion tensor imaging metrics after adjusting for age, sex, education, body mass index, smoking status, alcohol consumption history, and differences in the b value used for diffusion magnetic resonance imaging. RESULTS: Systolic and diastolic BP of the sample (mean±SD) were 122.8±13.0 and 76.0±9.9 mm Hg, respectively. Associations of BP with diffusion tensor imaging metrics revealed regional heterogeneity for FW-corrected fractional anisotropy. High BP and high hypertension stage were associated with higher FW and lower FW-corrected axial diffusivity, FW-corrected radial diffusivity, and FW-corrected mean diffusivity. Moreover, associations of high diastolic BP and hypertension stage with high FW were found only in men not in women. CONCLUSIONS: High BP in young adults is associated with altered brain WM microstructural integrity, suggesting that high BP may have damaging effects on brain WM microstructural integrity in early adulthood, particularly in men.


Subject(s)
Hypertension , White Matter , Male , Middle Aged , Humans , Female , Young Adult , Aged , Adult , Diffusion Tensor Imaging/methods , White Matter/pathology , Blood Pressure , Magnetic Resonance Imaging/methods , Brain
4.
Alzheimers Dement ; 20(4): 2980-2989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477469

ABSTRACT

INTRODUCTION: White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-ß1-42 (Aß42)-positive status. METHODS: Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume. RESULTS: VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p < 0.001), external capsule (B = 0.052, p < 0.001), and middle cerebellar peduncle (B = 0.067, p < 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p < 0.001) and splenium (B = 0.103, p < 0.001). DISCUSSION: Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. HIGHLIGHTS: Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aß42 status in 11 memory clinic cohorts. Aß42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.


Subject(s)
Arteriolosclerosis , Dementia , White Matter , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , White Matter/pathology , Arteriolosclerosis/pathology , Amyloid beta-Peptides/metabolism , Dementia/pathology , Magnetic Resonance Imaging
5.
Hypertension ; 81(1): 87-95, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37855140

ABSTRACT

BACKGROUND: Hypertension is the most potent stroke risk factor and is also related to cerebral small vessel disease. We studied the relation between mid-to-late-life hypertension trends and cerebral white matter injury in community-dwelling individuals from the FHS (Framingham Heart Study). METHODS: FHS Offspring cohort participants with available mid-life and late-life blood pressure measurements and brain magnetic resonance imaging were included. Multiple regression analyses were used to relate hypertension trends (normotension-normotension [reference], normotension-hypertension, and hypertension-hypertension) to white matter injury metrics on diffusion tensor imaging (free water, fractional anisotropy, and peak skeletonized mean diffusivity) and Fluid Attenuated Inversion Recovery (white matter hyperintensity volume) by different blood pressure cutoffs (130/80, 140/90, and 150/90 mm Hg). RESULTS: We included 1018 participants (mean age 47.3±7.4 years at mid-life and 73.2±7.3 at late-life). At the 140/90 mm Hg cutoff, the hypertension-hypertension trend was associated with higher free water (ß, 0.16 [95% CI, 0.03-0.30]; P=0.021) and peak skeletonized mean diffusivity (ß, 0.15 [95% CI, 0.01-0.29]; P=0.033). At a 130/80 mm Hg cutoff, the hypertension-hypertension trend had significantly higher free water (ß, 0.16 [95% CI, 0.01-0.30]; P=0.035); and the normotension-hypertension (ß, 0.24 [95% CI, 0.03-0.44]; P=0.027) and hypertension-hypertension (ß, 0.22 [95% CI, 0.04-0.41]; P=0.022) trends had significantly increased white matter hyperintensity volume. Exploratory stratified analysis showed effect modifications by APOE ɛ4 allele and age. CONCLUSIONS: Mid-to-late-life hypertension exposure is significantly associated with microstructural and to a lesser extent, visible white matter injury; the effects are observed at both conventional and lower blood pressure cutoffs and are associated with longer duration of hypertension.


Subject(s)
Brain Injuries , Hypertension , White Matter , Humans , Adult , Middle Aged , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology , Brain , Magnetic Resonance Imaging/methods , Longitudinal Studies , Brain Injuries/pathology , Water
6.
Neuroimage Clin ; 40: 103547, 2023.
Article in English | MEDLINE | ID: mdl-38035457

ABSTRACT

INTRODUCTION: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as "unusual", but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. METHODS: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. RESULTS: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. DISCUSSION: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , Cognitive Dysfunction/pathology , Multicenter Studies as Topic
7.
J Alzheimers Dis ; 96(2): 683-693, 2023.
Article in English | MEDLINE | ID: mdl-37840499

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) that occur in the setting of vascular cognitive impairment and dementia (VCID) may be dynamic increasing or decreasing volumes or stable over time. Quantifying such changes may prove useful as a biomarker for clinical trials designed to address vascular cognitive-impairment and dementia and Alzheimer's Disease. OBJECTIVE: Conducting multi-site cross-site inter-rater and test-retest reliability of the MarkVCID white matter hyperintensity growth and regression protocol. METHODS: The NINDS-supported MarkVCID Consortium evaluated a neuroimaging biomarker developed to track WMH change. Test-retest and cross-site inter-rater reliability of the protocol were assessed. Cognitive test scores were analyzed in relation to WMH changes to explore its construct validity. RESULTS: ICC values for test-retest reliability of WMH growth and regression were 0.969 and 0.937 respectively, while for cross-site inter-rater ICC values for WMH growth and regression were 0.995 and 0.990 respectively. Word list long-delay free-recall was negatively associated with WMH growth (p < 0.028) but was not associated with WMH regression. CONCLUSIONS: The present data demonstrate robust ICC validity of a WMH growth/regression protocol over a one-year period as measured by cross-site inter-rater and test-retest reliability. These data suggest that this approach may serve an important role in clinical trials of disease-modifying agents for VCID that may preferentially affect WMH growth, stability, or regression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , White Matter , Humans , White Matter/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Biomarkers
8.
Brain Sci ; 13(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37759924

ABSTRACT

Perivascular spaces (PVS) visible on brain MRI signal cerebral small vessel disease (CSVD). The coexistence of PVS with other CSVD manifestations likely increases the risk of adverse neurological outcomes. We related PVS to other CSVD manifestations and brain volumes that are markers of vascular brain injury and neurodegeneration. Framingham Heart Study (FHS) participants with CSVD ratings on brain MRI were included. PVS were rated in the basal ganglia (BG) and centrum semiovale (CSO) into grades I-IV and a category reflecting high burden in single or mixed CSO-BG regions. We related PVS to covert brain infarcts (CBI), white matter hyperintensities (WMH), cerebral microbleeds (CMB), total brain, hippocampal, and cortical gray matter volumes using adjusted multivariable regression analyses. In 2454 participants (mean age 54 ± 12 years), we observed that higher PVS burden in both BG and CSO was related to CMB in lobar and deep brain regions and increased WMH. Greater CSO PVS burden was associated with decreased total cortical gray volumes. PVS are associated with ischemic markers of CSVD and neurodegeneration markers. Further studies should elucidate the causality between PVS and other CSVD manifestations.

9.
Article in English | MEDLINE | ID: mdl-37718410

ABSTRACT

BACKGROUND: Borderline personality disorder (BPD) is frequently subject to misdiagnosis or underdiagnosis. As a matter of fact, its evaluation poses several challenges, highlighting the importance of having validated evaluation instruments. The Revised Diagnostic Interview for Borderlines (DIB-R) is widely used and recognized for its validity when it comes to assessing the psychopathology of BPD, but, as for now, no French version of the interview exists. The aim of the current work is to validate a French version of the DIB-R. METHODS: The sample consists of N = 65 patients with borderline personality disorder (BPD) and N = 57 treatment seeking patients (non-BPD comparison group). For inter-rater reliability, a subsample of N = 84 interviews will be assessed by two raters, n = 47 for the BPD group and n = 37 for the non-BPD comparison group. RESULTS: To assess reliability, we conducted analyses of internal consistency and inter-rater reliability. The results were good for the overall interview as well as for the four domains of the DIB-R. To assess validity, we calculated the receiver operating characteristic (ROC) curve, sensitivity, specificity, predictive values, convergent and discriminative validity. The optimal cutoff was found to be 7. Regarding convergent validity, we found strong convergence between the Borderline Symptom List (BSL-23) and the DIB-R total score. Additionally, the two groups statistically differed on all the DIB-R scores, which indicates that the interview discriminates between the two groups. CONCLUSIONS: Our results indicate good psychometric properties of the French version of the DIB-R. This has important implications as the interview is useful both in clinical settings and for research purposes. Additionally, the present paper aims to contribute to the more general effort of demonstrating generalizability and transportability of the scale.

10.
J Alzheimers Dis ; 95(2): 561-572, 2023.
Article in English | MEDLINE | ID: mdl-37574733

ABSTRACT

INTRODUCTION: Cardiometabolic risk factors and epigenetic patterns, increased in physically inactive individuals, are associated with an accelerated brain aging process. OBJECTIVE: To determine whether cardiometabolic risk factors and epigenetic patterns mediate the association of physical inactivity with unfavorable brain morphology. METHODS: We included dementia and stroke free participants from the Framingham Heart Study Third Generation and Offspring cohorts who had accelerometery and brain MRI data (n = 2,507, 53.9% women, mean age 53.9 years). We examined mediation by the 2017-revised Framingham Stroke Risk Profile (FSRP, using weights for age, cardiovascular disease, atrial fibrillation, diabetes and smoking status, antihypertension medications, and systolic blood pressure) and the homeostatic model of insulin resistance (HOMA-IR) in models of the association of physical inactivity with brain aging, adjusting for age, age-squared, sex, accelerometer wear time, cohort, time from exam-to-MRI, and season. We similarly assessed mediation by an epigenetic age-prediction algorithm, GrimAge, in a smaller sample of participants who had DNA methylation data (n = 1,418). RESULTS: FSRP and HOMA-IR explained 8.3-20.5% of associations of higher moderate-to-vigorous physical activity (MVPA), higher steps, and lower sedentary time with higher brain volume. Additionally, FSRP and GrimAge explained 10.3-22.0% of associations of physical inactivity with lower white matter diffusivity and FSRP explained 19.7% of the association of MVPA with lower free water accumulation. CONCLUSION: Our results suggest that cardiometabolic risk factors and epigenetic patterns partially mediate the associations of physical inactivity with lower brain volume, higher white matter diffusivity, and aggregation of free water in the extracellular compartments of the brain.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Humans , Female , Male , Risk Factors , Sedentary Behavior , Exercise/physiology , Insulin Resistance/genetics , Brain/diagnostic imaging , Aging/genetics , Magnetic Resonance Imaging , Epigenesis, Genetic , Water
11.
Med Image Anal ; 89: 102926, 2023 10.
Article in English | MEDLINE | ID: mdl-37595405

ABSTRACT

Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from differences in scanner specifications exists in the aggregated data and could inadvertently bias any downstream analyses on it. Such a challenge calls for data normalization and/or harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related variability and evaluate the harmonization frameworks. In this study, we propose MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised multi-scanner harmonization method that is naturally extendable to more than two scanners. We also designed a set of criteria to investigate the scanner-related technical variability and evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our knowledge is one of the few datasets of this kind. We also investigated our evaluations using two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping (SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is promising for many other neuroimaging modalities.


Subject(s)
Deep Learning , Humans , Reproducibility of Results , Neuroimaging , Pancreas , Sample Size
12.
Aging Dis ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37307817

ABSTRACT

The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was proposed to evaluate glymphatic system (GS) function. However, few studies have validated its reliability and reproducibility. Fifty participants' DTI data from the MarkVCID consortium were included in this study. Two pipelines by using DSI studio and FSL software were developed for data processing and ALPS index calculation. The ALPS index was obtained by the average of bilateral ALPS index and was used for testing the cross-vendor, inter-rater and test-retest reliability by using R studio software. The ALPS index demonstrated favorable inter-scanner reproducibility (ICC=0.77 to 0.95, P < 0.001), inter-rater reliability (ICC=0.96 to 1, P< 0.001) and test-retest repeatability (ICC=0.89 to 0.95, P< 0.001), offering a potential biomarker for in vivo evaluation of GS function.

13.
J Alzheimers Dis ; 94(2): 695-707, 2023.
Article in English | MEDLINE | ID: mdl-37302031

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and cerebrovascular disease are common, co-existing pathologies in older adults. Whether the effects of cerebrovascular disease and AD biomarkers on cognition are additive or synergistic remains unclear. OBJECTIVE: To examine whether white matter hyperintensity (WMH) volume moderates the independent association between each AD biomarker and cognition. METHODS: In 586 older adults without dementia, linear regressions tested the interaction between amyloid-ß (Aß) positron emission tomography (PET) and WMH volume on cognition, independent of tau-PET. We also tested the interaction between tau-PET and WMH volume on cognition, independent of Aß-PET. RESULTS: Adjusting for tau-PET, the quadratic effect of WMH interacted with Aß-PET to impact memory. There was no interaction between either the linear or quadratic effect of WMH and Aß-PET on executive function. There was no interaction between WMH volume and tau-PET on either cognitive measure. CONCLUSION: Results suggest that cerebrovascular lesions act synergistically with Aß to affect memory, independent of tau, highlighting the importance of incorporating vascular pathology into biomarker assessment of AD.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Cognitive Dysfunction , White Matter , Humans , Aged , White Matter/pathology , tau Proteins/metabolism , Magnetic Resonance Imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography , Cerebrovascular Disorders/complications , Amyloid , Biomarkers , Cognitive Dysfunction/pathology
14.
Lancet Neurol ; 22(7): 602-618, 2023 07.
Article in English | MEDLINE | ID: mdl-37236211

ABSTRACT

Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI. Since then, new information on these established SVD markers and novel MRI sequences and imaging features have emerged. As the effect of combined SVD imaging features becomes clearer, a key role for quantitative imaging biomarkers to determine sub-visible tissue damage, subtle abnormalities visible at high-field strength MRI, and lesion-symptom patterns, is also apparent. Together with rapidly emerging machine learning methods, these metrics can more comprehensively capture the effect of SVD on the brain than the structural MRI features alone and serve as intermediary outcomes in clinical trials and future routine practice. Using a similar approach to that adopted in STRIVE-1, we updated the guidance on neuroimaging of vascular changes in studies of ageing and neurodegeneration to create STRIVE-2.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Activities of Daily Living , Neuroimaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cerebral Small Vessel Diseases/diagnostic imaging
15.
JAMA Netw Open ; 6(4): e236431, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37010868

ABSTRACT

Importance: The association between hypertension developed before midlife and late-life brain health is understudied and, because of the cardioprotective benefits of estrogen before menopause, may differ by sex. Objective: To assess the association of early adulthood hypertension and blood pressure (BP) change with late-life neuroimaging biomarkers and examine potential sex differences. Design, Setting, and Participants: This cohort study used data from the Study of Healthy Aging in African Americans (STAR) and Kaiser Healthy Aging and Diverse Life Experiences (KHANDLE) study, which were harmonized longitudinal cohorts of racially and ethnically diverse adults aged 50 years and older from the San Francisco Bay area and Sacramento Valley in California. The STAR was conducted from November 6, 2017, to November 5, 2021, and the KHANDLE study was conducted from April 27, 2017, to June 15, 2021. The current study included 427 participants from the KHANDLE and STAR studies who received health assessments between June 1, 1964, and March 31, 1985. Regional brain volumes and white matter (WM) integrity were measured via magnetic resonance imaging between June 1, 2017, and March 1, 2022. Exposures: Hypertension status (normotension, transition to hypertension, and hypertension) and BP change (last measure minus first measure) were assessed at 2 multiphasic health checkups (MHCs; 1964-1985) in early adulthood (ages 30-40 years). Main Outcomes and Measures: Regional brain volumes and WM integrity were measured using 3T magnetic resonance imaging and z standardized. General linear models adjusted for potential confounders (demographic characteristics and study [KHANDLE or STAR]) were used to assess the association of hypertension and BP change with neuroimaging biomarkers. Sex interactions were tested. Results: Among 427 participants, median (SD) ages were 28.9 (7.3) years at the first MHC, 40.3 (9.4) years at the last MHC, and 74.8 (8.0) years at neuroimaging. A total of 263 participants (61.6%) were female and 231 (54.1%) were Black. Overall, 191 participants (44.7%) had normotension, 68 (15.9%) transitioned to hypertension, and 168 (39.3%) had hypertension. Compared with participants who had normotension, those who had hypertension and those who transitioned to hypertension had smaller cerebral volumes (hypertension: ß = -0.26 [95% CI, -0.41 to -0.10]; transition to hypertension: ß = -0.23 [95% CI, -0.44 to -0.23]), with similar differences in cerebral gray matter volume (hypertension: ß = -0.32 [95% CI, -0.52 to -0.13]; transition to hypertension: ß = -0.30 [95% CI, -0.56 to -0.05]), frontal cortex volume (hypertension: ß = -0.43 [95% CI, -0.63 to -0.23]; transition to hypertension: ß = -0.27 [95% CI, -0.53 to 0]), and parietal cortex volume (hypertension: ß = -0.22 [95% CI, -0.42 to -0.02]; transition to hypertension: ß = -0.29 [95% CI, -0.56 to -0.02]). Participants with hypertension also had smaller hippocampal volume (ß = -0.22; 95% CI, -0.42 to -0.02), greater ventricular volumes (lateral ventricle: ß = 0.44 [95% CI, 0.25-0.63]; third ventricle: ß = 0.20 [95% CI, 0.01-0.39]), larger free water volume (ß = 0.35; 95% CI, 0.18-0.52), and lower fractional anisotropy (ß = -0.26; 95% CI, -0.45 to -0.08) than those who had normotension. Holding hypertension status constant, a 5-mm Hg increase in systolic BP was associated with smaller temporal cortex volume (ß = -0.03; 95% CI, -0.06 to -0.01), while a 5-mm Hg increase in diastolic BP was associated with smaller parietal cortex volume (ß = -0.06; 95% CI, -0.10 to -0.02). The negative association of hypertension and BP change with regional brain volumes appeared stronger in men than women for some regions. Conclusions and Relevance: In this cohort study, early adulthood hypertension and BP change were associated with late-life volumetric and WM differences implicated in neurodegeneration and dementia. Sex differences were observed for some brain regions whereby hypertension and increasing BP appeared more detrimental for men. These findings suggest that prevention and treatment of hypertension in early adulthood is important for late-life brain health, particularly among men.


Subject(s)
Hypertension , Adult , Female , Humans , Male , Middle Aged , Aged , Blood Pressure/physiology , Cohort Studies , Risk Factors , Hypertension/diagnostic imaging , Hypertension/epidemiology , Hypertension/complications , Biomarkers , Neuroimaging
16.
Res Sq ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778357

ABSTRACT

Background Recent data suggest that dementia incidence is declining. We investigated whether similar secular trends consisting of increasing size of brain structures and improving memory performance could be simultaneously occurring as a possible explanation. Method The Framingham Heart Study is a 3 generation, longitudinal study that includes cognitive assessment and medical surveillance. This study cohort consisted of 4,506 unique, non-demented, stroke free, individuals with brain MRI, cognitive assessment, and demographic information spanning dates of birth from 1902 to 1985. Outcomes consisted of height, MRI, and memory measures. Covariates included age at MRI, sex, decade of birth, and all interactions. Models with neuropsychological outcomes also included educational achievement as a covariate. Results Height and intracranial (TCV), hippocampus and cortical gray matter volumes were significantly larger, and memory performance significantly better, with advancing decades of birth after adjusting for age, sex, and interactions. Sensitivity analysis using progressively restricted age-ranges to reduce the association between age and decade of birth, confirmed the findings. Mediation analysis showed that hippocampal volume mediated approximately 5-7% of the effect of decade of birth on logical memory performance. Discussion These findings indicate improvement in brain health and memory performance with advancing decades of birth. Although brain structures are under substantial genetic influence, we conclude that improved early life environmental influences over ensuing decades likely explain these results. We hypothesize that these secular improvements are consistent with declining dementia incidence in this cohort potentially through a mechanism of increased brain reserve.

17.
Alzheimers Dement ; 19(8): 3519-3527, 2023 08.
Article in English | MEDLINE | ID: mdl-36815663

ABSTRACT

INTRODUCTION: High-performing biomarkers measuring the vascular contributions to cognitive impairment and dementia are lacking. METHODS: Using a multi-site observational cohort study design, we examined the diagnostic accuracy of plasma placental growth factor (PlGF) within the MarkVCID Consortium (n = 335; CDR 0-1). Subjects underwent clinical evaluation, cognitive testing, MRI, and blood sampling as defined by Consortium protocols. RESULTS: In the prospective population of 335 subjects (72.2 ± 7.8 years of age, 49.3% female), plasma PlGF (pg/mL) shows an ordinal odds ratio (OR) of 1.16 (1.07-1.25; P = .0003) for increasing Fazekas score and ordinal OR of 1.22 (1.14-1.32; P < .0001) for functional cognitive impairment measured by the Clinical Dementia Rating scale. We achieved the primary study outcome of a site-independent association of plasma PlGF (pg/mL) with white matter injury and cognitive impairment in two of three study cohorts. Secondary outcomes using the full MarkVCID cohort demonstrated that plasma PlGF can significantly discriminate individuals with Fazekas ≥ 2 and CDR = 0.5 (area under the curve [AUC] = 0.74) and CDR = 1 (AUC = 0.89) from individuals with CDR = 0. DISCUSSION: Plasma PlGF measured by standardized immunoassay functions as a stable, reliable, diagnostic biomarker for cognitive impairment associated with substantial white matter burden.


Subject(s)
Cognitive Dysfunction , Female , Humans , Male , Middle Aged , Biomarkers , Cognitive Dysfunction/diagnosis , Placenta Growth Factor , Prospective Studies , Aged , Aged, 80 and over
18.
Alzheimers Dement ; 19(6): 2420-2432, 2023 06.
Article in English | MEDLINE | ID: mdl-36504357

ABSTRACT

INTRODUCTION: Impact of white matter hyperintensities (WMH) on cognition likely depends on lesion location, but a comprehensive map of strategic locations is lacking. We aimed to identify these locations in a large multicenter study. METHODS: Individual patient data (n = 3525) from 11 memory clinic cohorts were harmonized. We determined the association of WMH location with attention and executive functioning, information processing speed, language, and verbal memory performance using voxel-based and region of interest tract-based analyses. RESULTS: WMH in the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus were significantly related to domain-specific impairment, independent of total WMH volume and atrophy. A strategic WMH score based on these tracts inversely correlated with performance in all domains. DISCUSSION: The data show that the impact of WMH on cognition is location-dependent, primarily involving four strategic white matter tracts. Evaluation of WMH location may support diagnosing vascular cognitive impairment. HIGHLIGHTS: We analyzed white matter hyperintensities (WMH) in 3525 memory clinic patients from 11 cohorts The impact of WMH on cognition depends on location We identified four strategic white matter tracts A single strategic WMH score was derived from these four strategic tracts The strategic WMH score was an independent determinant of four cognitive domains.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognition , Executive Function , Neuropsychological Tests
19.
Alzheimers Dement (Amst) ; 14(1): e12362, 2022.
Article in English | MEDLINE | ID: mdl-36523847

ABSTRACT

Introduction: To evaluate the clinical validity of free water (FW), a diffusion tensor imaging-based biomarker kit proposed by the MarkVCID consortium, by investigating the association between mean FW (mFW) and executive function. Methods: Baseline mFW was related to a baseline composite measure of executive function (EFC), adjusting for relevant covariates, in three MarkVCID sub-cohorts, and replicated in five, large, independent legacy cohorts. In addition, we tested whether baseline mFW predicted accelerated EFC score decline (mean follow-up time: 1.29 years). Results: Higher mFW was found to be associated with lower EFC scores in MarkVCID legacy and sub-cohorts (p-values < 0.05). In addition, higher baseline mFW was associated significantly with accelerated decline in EFC scores (p = 0.0026). Discussion: mFW is a sensitive biomarker of cognitive decline, providing a strong clinical rational for its use as a marker of white matter (WM) injury in multi-site observational studies and clinical trials of vascular cognitive impairment and dementia (VCID).

20.
Front Cardiovasc Med ; 9: 1013876, 2022.
Article in English | MEDLINE | ID: mdl-36386360

ABSTRACT

Background: Dysregulation of compensatory mechanisms to regulate blood pressure (BP) upon postural change is a phenotype of BP variability and an emerging risk factor for cardiovascular outcomes. Materials and methods: We assessed postural change in BP (starting 2 min after standing from a supine position), carotid-femoral pulse wave velocity (cfPWV), and markers of hypertension-mediated organ damage (HMOD) in the heart, kidney, and brain in Framingham Third Generation, Omni-2, and New Offspring Spouse Cohort participants. We related vascular measures (postural change in BP measures and cfPWV) with HMOD in 3,495 participants (mean age 47 years, 53% women) using multivariable logistic and linear regression models. Results: In multivariable-adjusted models, we did not observe significant associations of vascular measures with presence of left ventricular hypertrophy, albuminuria, covert brain infarcts, or white matter hyperintensities (Bonferroni-adjusted P-values > 0.05/20 > 0.0025). In multivariable models, greater cfPWV (est. ß = 0.11 ± 0.03; P < 0.001), but not postural change in BP measures (Bonferroni-adjusted P-values > 0.05/20 > 0.0025), was associated with higher white matter free water using brain magnetic resonance imaging. In multivariable models, greater postural change in pulse pressure was associated with higher urinary albumin-creatinine ratio (est. ß = 0.07 ± 0.02; P < 0.001). No other postural change in BP measure was associated with urinary albumin-creatinine ratio (Bonferroni-adjusted P-values > 0.05/20 > 0.0025). In sex-specific analyses, higher cfPWV was associated with higher urinary albumin-creatinine ratio in men (est. ß: 0.11 ± 0.04; P = 0.002) but not in women (est. ß: 0.03 ± 0.03; P = 0.44). We also observed marginal to strong effect modification by above vs. at/below median postural change in BP for the association of cfPWV with urinary albumin-creatinine ratio (Bonferroni-adjusted interaction P < 0.001-0.01). Vascular measures were not related to left ventricular mass index or fractional anisotropy (Bonferroni-adjusted P-values > 0.05/20 > 0.0025). Conclusion: Baroreflex dysfunction is associated with greater subclinical kidney damage. Additionally, relations of higher aortic stiffness with greater kidney damage may be modified by associated baroreflex dysregulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...