Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
mSphere ; 9(1): e0060023, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38168676

ABSTRACT

Influenza virus poses a recurring threat to public health and infects many populations in annual waves of generally unpredictable magnitude and timing. We aimed to detect the arrival and estimate the case magnitude of seasonal influenza A in urban New York City college dormitory buildings. Our wastewater-based surveillance (WBS) program measured viral RNA in the sewage outflow of three dormitories at Barnard College in 2021 and 2022. Wastewater test positivity strongly correlated with New York County clinical cases (Kendall's τ = 0.58). Positive wastewater samples are also associated with campus clinical cases. The 2022 data stand in stark contrast to the 2021 results by revealing the more frequent and earlier presence of influenza A. The increase in positive tests is significant (P < 0.01). It is further noteworthy that positive samples were not evenly distributed among buildings. Surveillance additionally identified the influenza A H3 subtype but did not detect any influenza B. We also systematically analyzed our viral purification protocol to identify in which fraction influenza can be found. While virus can be found in solid fractions, a substantial quantity remains in the final liquid fraction. Our work focuses on individual buildings rather than larger sewersheds because buildings may localize interseasonal influenza variation to specific subpopulations. Our results highlight the potential value of building-level WBS in measuring influenza incidence to help guide public health intervention.IMPORTANCESeasonal influenza remains a major public health burden. We monitored influenza A in dormitory wastewater of a New York City college in 2021 and 2022. Longitudinal samples acquired over consecutive years allowed measurement of individual buildings between seasons. We uncovered building-level changes in the magnitude and timing of test positivity concordant with clinical cases. Surveillance also localized the heterogeneity of influenza variation during the large 2022 seasonal surge. The ability to detect such changes could be leveraged as part of a public health response.


Subject(s)
Influenza, Human , Humans , Influenza, Human/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring , Disease Outbreaks , Public Health
2.
Sci Rep ; 13(1): 19324, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935778

ABSTRACT

Urban parks became critical for maintaining the well-being of urban residents during the COVID-19 global pandemic. To examine the impact of COVID-19 on urban park usage, we selected New York City (NYC) and used SafeGraph mobility data, which was collected from a large sample of mobile phone users, to assess the change in park visits and travel distance to a park based on 1) park type, 2) the income level of the visitor census block group (visitor CBG) and 3) that of the park census block group (park CBG). All analyses were adjusted for the impact of temperature on park visitation, and we focused primarily on visits made by NYC residents. Overall, for the eight most popular park types in NYC, visits dropped by 49.2% from 2019 to 2020. The peak reduction in visits occurred in April 2020. Visits to all park types, excluding Nature Areas, decreased from March to December 2020 as compared to 2019. Parks located in higher-income CBGs tended to have lower reductions in visits, with this pattern being primarily driven by large parks, including Flagship Parks, Community Parks and Nature Areas. All types of parks saw significant decreases in distance traveled to visit them, with the exception of the Jointly Operated Playground, Playground, and Nature Area park types. Visitors originating from lower-income CBGs traveled shorter distances to parks and had less reduction in travel distances compared to those from higher-income CBGs. Furthermore, both before and during the pandemic, people tended to travel a greater distance to parks located in high-income CBGs compared to those in low-income CBGs. Finally, multiple types of parks proved crucial destinations for NYC residents during the pandemic. This included Nature Areas to which the visits remained stable, along with Recreation Field/Courts which had relatively small decreases in visits, especially for lower-income communities. Results from this study can support future park planning by shedding light on the different uses of certain park types before and during a global crisis, when access to these facilities can help alleviate the human well-being consequences of "lockdown" policies.


Subject(s)
COVID-19 , Recreation , Humans , Parks, Recreational , Pandemics , Public Facilities , COVID-19/epidemiology
3.
Sci Total Environ ; 899: 165407, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37429467

ABSTRACT

Contaminated soil in urban residential areas is often overlooked as a source of childhood exposure to toxic levels of lead (Pb). We document mean Pb concentrations of 1200 ± 1000 mg/kg, three times the now outdated EPA soil hazard standard of 400 mg/kg, for 370 surface soils collected from 76 homes in the boroughs of Brooklyn and Manhattan of New York City. The mean Pb content of 250 ± 290 mg/kg Pb for 571 surface soils collected from tree pits and public parks was much lower. A subset of 22 surface samples analyzed by EPA Method 1340 extracted 86 ± 21 % (±1SD) of total soil Pb, indicating that it the Pb was highly bioavailable. To investigate the origin of backyard contamination, 49 cores were collected to an average depth of 30 cm from a subset of 27 homes. Twelve soil cores were analyzed for 210Pb and 137Cs to constrain processes that impact contaminant distribution and inventories (particle focusing, soil accumulation, loss, and mixing). Concentrations of Pb declined with depth in 60 % of the cores but usually did not reach background. Mean uncorrected Pb inventories of 340 ± 210 g/m2 Pb (mean ± 1SD, n = 12) were more than five times higher than the radionuclide corrected inventory of 57 g/m2 from Central Park soil cores. Average inventories of 210Pbxs (3.5 ± 0.9 kBq/m2) and 137Cs (0.9 ± 0.6 kBq/m2) corresponded to 71 ± 19 % and 50 ± 30 % of the predicted atmospheric inventories. Elevated Pb concentrations were found both in the fine (<1 mm) and coarse (>1 mm) fractions, the latter suggesting a local non-atmospheric source. This was confirmed by individual grains containing up to 6 % Pb and visible pieces of coal, bricks, and ash. Regardless of the source of contamination in backyard soils, systematic testing is needed to identify contaminated areas and reduce child exposure.


Subject(s)
Soil Pollutants , Soil , Child , Humans , Lead , Soil Pollutants/analysis , Cesium Radioisotopes , Environmental Monitoring
5.
Microbiol Spectr ; : e0292922, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975999

ABSTRACT

We established wastewater surveillance of SARS-CoV-2 in a small, residential, urban college as part of an integrated public health response during the COVID-19 pandemic. Students returned to campus in spring 2021. During the semester, students were required to perform nasal PCR tests twice weekly. At the same time, wastewater monitoring was established in 3 campus dormitory buildings. Two were dedicated dormitories with populations of 188 and 138 students; 1 was an isolation building where students were moved within 2 h of receiving positive test results. Analysis of wastewater from isolation indicated that the amount of viral shedding was highly variable and that viral concentration could not be used to estimate the number of cases at the building level. However, rapid movement of students to isolation enabled determination of predictive power, specificity, and sensitivity from instances in which generally one positive case at a time occurred in a building. Our assay yields effective results with an ~60% positive predictive power, ~90% negative predictive power, and ~90% specificity. Sensitivity, however, is low at ~40%. Detection is improved in the few instances of 2 simultaneous positive cases, with sensitivity of 1 case versus 2 cases increasing from ~20% to 100%. We also measured the appearance of a variant of concern on campus and noted a similarity in timeline with increased prevalence in surrounding New York City. Monitoring SARS-CoV-2 in the sewage outflow of individual buildings can be used with a realistic goal of containing outbreak clusters but not necessarily single cases. IMPORTANCE Diagnostic testing of sewage can detect levels of circulating viruses to help inform public health. Wastewater-based epidemiology has been particularly active during the COVID-19 pandemic to measure the prevalence of SARS-CoV-2. Understanding the technical limitations of diagnostic testing for individual buildings would help inform future surveillance programs. We report our diagnostic and clinical data monitoring of buildings on a college campus in New York City during the spring 2021 semester. Frequent nasal testing, mitigation measures, and public health protocols provided a context in which to study the effectiveness of wastewater-based epidemiology. Our efforts could not consistently detect individual positive COVID-19 cases, but sensitivity is significantly improved in detecting two simultaneous cases. We therefore contend that wastewater surveillance may be more practically suited for the mitigation of outbreak clusters.

6.
Sci Total Environ ; 806(Pt 3): 151353, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34743882

ABSTRACT

Chronic exposure from drinking well-water with naturally high concentrations of fluoride (F-) has serious health consequences in several regions across the world including South Asia, where the rural population is particularly dependent on untreated groundwater pumped from private wells. An extensive campaign to test 28,648 wells was conducted across the Punjab plains of Pakistan and India by relying primarily on field kits to document the scale of the problem and shed light on the underlying mechanisms. Groundwater samples were collected from a subset of 712 wells for laboratory analysis of F- and other constituents. A handful of sites showing contrasting levels of F- in groundwater were also drilled to determine if the composition of aquifer sediment differed between these sites. The laboratory data show that the field kits correctly classified 91% of the samples relative to the World Health Organization guideline for drinking water of 1.5 mg/L F-. The kit data indicate that 9% of wells across a region extending from the Indus to the Sutlej rivers were elevated in F- relative to this guideline. Field data indicate an association between the proportion of well-water samples with F- > 1.5 mg/L and electric conductivity (EC) > 1.5 mS/cm across six floodplains and six intervening doabs. Low Ca2+ concentrations and elevated bicarbonate (HCO3- > 500 mg/L) and sodium (Na+ > 200 mg/L) in high F- groundwater suggest regulation by fluorite. This could be through either the lack of precipitation or the dissolution of fluorite regulated by the loss of Ca2+ from groundwater due to precipitation of calcite and/or ion exchange with clay minerals. Widespread salinization of Punjab aquifers attributed to irrigation may have contributed to higher F- levels in groundwater of the region. Historical conductivity data suggest salinization has yet to be reversed in spite of changes in water resources management.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Fluorides/analysis , Humans , India , Pakistan , Water Pollutants, Chemical/analysis
7.
Microbiol Resour Announc ; 10(21): e0017421, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042474

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), is shed into wastewater. Accessible methods are necessary for processing samples in a myriad of contexts. We optimized a protocol for extracting viral RNA for downstream experiments. Our pipeline was validated with SARS-CoV-2 itself as a matrix recovery and quantitative measurement control.

8.
Ground Water ; 59(1): 80-89, 2021 01.
Article in English | MEDLINE | ID: mdl-32483831

ABSTRACT

Geogenic arsenic in drinking water is a worldwide problem. For private well owners, testing (e.g., private or government laboratory) is the main method to determine arsenic concentration. However, the temporal variability of arsenic concentrations is not well characterized and it is not clear how often private wells should be tested. To answer this question, three datasets, two new and one publicly available, with temporal arsenic data were utilized: 6370 private wells from New Jersey tested at least twice since 2002, 2174 wells from the USGS NAWQA database, and 391 private wells sampled 14 years apart from Bangladesh. Two arsenic drinking water standards are used for the analysis: 10 µg/L, the WHO guideline and EPA standard or maximum contaminant level (MCL) and 5 µg/L, the New Jersey MCL. A rate of change was determined for each well and these rates were used to predict the temporal change in arsenic for a range of initial arsenic concentrations below an MCL. For each MCL and initial concentration, the probability of exceeding an MCL over time was predicted. Results show that to limit a person to below a 5% chance of drinking water above an MCL, wells that are ½ an MCL and above should be tested every year and wells below ½ an MCL should be tested every 5 years. These results indicate that one test result below an MCL is inadequate to ensure long-term compliance. Future recommendations should account for temporal variability when creating drinking water standards and guidance for private well owners.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Bangladesh , Environmental Monitoring , Humans , New Jersey , Water Pollutants, Chemical/analysis , Water Supply , Water Wells
9.
Water Res ; 183: 116081, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32784107

ABSTRACT

Groundwater flow has the potential to introduce arsenic (As) in previously uncontaminated aquifers. The extent to which As transport is retarded by adsorption is particularly relevant in Bangladesh where low-As wells offer the best chance of reducing chronic exposure to As of a large rural population dependent on groundwater. In this study, column experiments were conducted with intact cores in the field to measure As retardation. Freshly collected cores of reduced iron (Fe-II) dominated gray sediment of Holocene age as well as oxidized Fe (III)-coated orange sediment of Pleistocene age were eluted at pore-water velocities of 40-230 cm/day with anoxic groundwater pumped directly from a well and containing 320 µg/L As. Up to 100 µg/L As was immediately released from gray sand but the main As breakthrough for both gray and orange sand occurred between 30 and 70 pore volumes, depending on flow rate. The early release of As from gray sand is attributed to the presence of a weakly bound pool of As. The sorption of As was kinetically limited in both gray and orange sand columns. We used a reversible multi-reaction transport model to simulate As breakthrough curves while keeping the model parameters as constant as possible. Contrary to the notion that dissolved As is sorbed more strongly to orange sands, we show that As was similarly retarded in both gray and orange sands in the field.


Subject(s)
Arsenic/analysis , Citrus sinensis , Groundwater , Water Pollutants, Chemical/analysis , Bangladesh , Geologic Sediments , Humans
10.
Nat Commun ; 11(1): 2244, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382006

ABSTRACT

Confining clay layers typically protect groundwater aquifers against downward intrusion of contaminants. In the context of groundwater arsenic in Bangladesh, we challenge this notion here by showing that organic carbon drawn from a clay layer into a low-arsenic pre-Holocene (>12 kyr-old) aquifer promotes the reductive dissolution of iron oxides and the release of arsenic. The finding explains a steady rise in arsenic concentrations in a pre-Holocene aquifer below such a clay layer and the repeated failure of a structurally sound community well. Tritium measurements indicate that groundwater from the affected depth interval (40-50 m) was recharged >60 years ago. Deeper (55-65 m) groundwater in the same pre-Holocene aquifer was recharged only 10-50 years ago but is still low in arsenic. Proximity to a confining clay layer that expels organic carbon as an indirect response to groundwater pumping, rather than directly accelerated recharge, caused arsenic contamination of this pre-Holocene aquifer.


Subject(s)
Arsenic/analysis , Clay/chemistry , Bangladesh , Environmental Monitoring/methods , Geologic Sediments/analysis , Groundwater/analysis , Water Pollutants, Chemical/analysis , Water Supply
11.
Sci Total Environ ; 722: 137834, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32199373

ABSTRACT

The objective of this study was to quantify the seasonal risk of salt damage to bioswale plants, soil, microbes, and downstream waterbodies. To do so, we measured sodium, chloride, and electrical conductivity levels at seven bioswales located in the Bronx, New York City, over 42 storm events during a three-year monitoring period. The bioswale with the greatest salt contamination (median 206 mg/L chloride) had a unique inlet design without any possibility of inlet bypass. The most severe effects at all sites were found during the winter season, as infiltrate concentrations frequently (40% of winter samples) exceeded 1000 mg/L chloride, a level lethal to aquatic plants and invertebrates, and electrical conductivity exceeded 1500 µS cm-1 (50% of winter samples), a level that may displace bound metals from bioswale soils and into the subsurface. However, low levels of permanent salt contamination may be expected all year, as concentrations frequently (87% of all samples) exceeded the United States Environmental Protection Agency drinking water standard of 20 mg/L sodium. A regression of chloride washout over the year yielded concentrations greater than those damaging to soil structure and soil microbes (90 mg/L) until August 20th, and above those damaging to roadside vegetation (30 mg/L) for the entire year. Today, the vast majority of bioswales in cold climates are built with salt-tolerant vegetation, but prior to this study, it was unclear to what degree this was, in fact, necessary. Our findings confirm salt-tolerant vegetation to be optimal, as winter de-icing salts are not sufficiently flushed from soils by the spring growing season. Our findings also demonstrate how bioswale inlet design and site location can influence soil contamination.


Subject(s)
Soil , Environmental Monitoring , New York City , Plants , Seasons , Soil Pollutants
12.
Sci Rep ; 9(1): 10370, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316095

ABSTRACT

Determining the carbon sources for active microbial populations in the subsurface is a challenging but highly informative component of subsurface microbial ecology. This work developed a method to provide ecological insights into groundwater microbial communities by characterizing community RNA through its radiocarbon and ribosomal RNA (rRNA) signatures. RNA was chosen as the biomolecule of interest because rRNA constitutes the majority of RNA in prokaryotes, represents recently active organisms, and yields detailed taxonomic information. The method was applied to a groundwater filter collected from a shallow alluvial aquifer in Colorado. RNA was extracted, radiometrically dated, and the 16S rRNA was analyzed by RNA-Seq. The RNA had a radiocarbon signature (Δ14C) of -193.4 ± 5.6‰. Comparison of the RNA radiocarbon signature to those of potential carbon pools in the aquifer indicated that at least 51% of the RNA was derived from autotrophy, in close agreement with the RNA-Seq data, which documented the prevalence of autotrophic taxa, such as Thiobacillus and Gallionellaceae. Overall, this hybrid method for RNA analysis provided cultivation-independent information on the in-situ carbon sources of active subsurface microbes and reinforced the importance of autotrophy and the preferential utilization of dissolved over sedimentary organic matter in alluvial aquifers.


Subject(s)
Autotrophic Processes , Bacteria/metabolism , Groundwater/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , Carbon Cycle , Carbon Radioisotopes/analysis , Colorado , Escherichia coli/metabolism , Iron/metabolism , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Radiometric Dating , Sequence Analysis, RNA , Sulfur/metabolism
13.
Anal Chem ; 91(13): 8192-8198, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31177771

ABSTRACT

Soils retain lead contamination from possible sources such as mining, smelting, battery recycling, waste incineration, leaded gasoline, and crumbling paint. Such contamination is often concentrated in toxic hot spots that need to be identified locally. To address this need, a simple field procedure was designed to screen soil for hazardous Pb for use by the general public. The procedure is a modification of the in vitro soil Pb extraction described by Drexler and Brattin ( Hum. Ecol. Risk Assess. 2007, 13, 383 ) and EPA Method 1340, and uses a 0.4 M glycine solution at pH 1.5. A higher soil-to-solution ratio of 1:10 allows for classifying soil samples based on extractable Pb concentrations of <200 mg/kg (low), 200-400 mg/kg (medium), and >400 mg/kg (high) using sodium rhodizonate as a color indicator. The 1:10 soil-to-solution ratio also makes it possible to measure Pb concentrations in the glycine extract solutions on a continuous scale using a portable X-ray fluorescence analyzer. The procedure rather consistently extracts about one-third of the Pb extracted by the standard method across a wide range of Pb concentrations. Manufacturing the kit in larger quantities could reduce the cost of the materials well below the current $5/test.


Subject(s)
Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Cyclohexanones , Glycine , Hydrogen-Ion Concentration , Lead/isolation & purification , Spectrometry, X-Ray Emission/methods
14.
Sci Total Environ ; 665: 944-958, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30790764

ABSTRACT

The objective of this study was to evaluate the impact of bioswales on nutrient pollution in an urban combined sewershed. This evaluation was based on two criteria: the ability of bioswales to (1) remove nutrient pollution from stormwater runoff directly and (2) decrease sewer overflow volumes, which indirectly reduces total sewershed nutrient pollution during a storm event. Bioswales' direct nutrient removal was determined by analyzing nitrogen and phosphorus levels in water samples at seven bioswales located in the Bronx, New York City (NYC) over 42 storm events, while a bioswale's indirect nutrient removal through combined sewer overflow reduction was estimated by quantifying water retention at one of the bioswales. The study results indicated that: 1) the bioswale retained about 40% of stormwater conveyed to it from a drainage area 231 times its size, 2) bioswales leach nutrients into the subsurface, and 3) nitrogen leaching from bioswales varied seasonally, while phosphorus leaching decreased steadily over the study period. Although the studied bioswales leached a median 1.3 kg nitrogen per year into the subsurface, they provided an aggregate decrease in watershed nutrient pollution, from 7.7 to 6 kg nitrogen per year, due to their reduction of combined sewer overflow via stormwater retention.


Subject(s)
Nitrogen/analysis , Phosphorus/analysis , Waste Disposal, Fluid/instrumentation , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Wetlands , Biodegradation, Environmental , New York City
15.
Water Resour Res ; 55(8): 6712-6728, 2019 Aug.
Article in English | MEDLINE | ID: mdl-34079149

ABSTRACT

Widespread contamination of groundwater with geogenic arsenic is attributed to microbial dissolution of arsenic-bearing iron (oxyhydr)oxides minerals coupled to the oxidation of organic carbon. The recharge sources to an aquifer can influence groundwater arsenic concentrations by transport of dissolved arsenic or reactive constituents that affect arsenic mobilization. To understand how different recharge sources affect arsenic contamination-in particular through their influence on organic carbon and sulfate cycling-we delineated and quantified recharge sources in the arsenic affected region around Hanoi, Vietnam. We constrained potential end-member compositions and employed a novel end-member mixing model using an ensemble approach to apportion recharge sources. Groundwater arsenic and dissolved organic carbon concentrations are controlled by the dominant source of recharge. High arsenic concentrations are prevalent regardless of high dissolved organic carbon or ammonium levels, indicative of organic matter decomposition, where the dominant recharge source is riverine. In contrast, high dissolved organic carbon and significant organic matter decomposition are required to generate elevated groundwater arsenic where recharge is largely nonriverine. These findings suggest that in areas of riverine recharge, arsenic may be efficiently mobilized from reactive surficial environments and carried from river-aquifer interfaces into groundwater. In groundwaters derived from nonriverine recharge areas, significantly more organic carbon mineralization is required to obtain equivalent levels of arsenic mobilization within inland sediments. This method can be broadly applied to examine the connection between hydrology, geochemistry and groundwater quality.

16.
Chemosphere ; 212: 219-227, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30144683

ABSTRACT

Oxalic acid potentially enhances pump-and-treat for groundwater As remediation by accelerating mobilization. This study examines how oxalic acid mobilizes As from Fe(III)-oxide coated sand under hydrodynamic conditions. Four columns were packed with metal-substituted ferrihydrite or goethite to 1% Fe, presorbed to 50% As surface coverage, and reacted with pH = 2.2 artificial groundwater amended with 10 mM oxalic acid at 1 m day-1. Arsenic elution was affected by both As and Fe speciation. Although the As(V) columns experienced faster substrate dissolution, As(V) elution was delayed by re-adsorption, whereas As(III) elution was rapid due to pH decrease that prevented re-adsorption. Cr-ferrihydrite and Ni-goethite dissolved both effectively initially but then diverged. The Cr-ferrihydrite columns experienced continuous stoichiometric Fe and Cr release, and As release could be sustained. The Ni-goethite columns initially experienced nonstoichiometric Fe and Ni release, and As release was extensive. Such release, however, was not sustained. We hypothesized that Ni-goethite contained sites with distinct reactivity, and oxalic acid targeted readily-dissolved, sorption-dense sites. Our data indicate that oxalic acid-enhanced pump-and-treat methods would be easier to apply to aquifers dominated by As(III), requiring less amendment to be injected; such oxalic acid-enhanced methods remove reactive sediment Fe and As, potentially preventing future groundwater contamination.


Subject(s)
Arsenic/chemistry , Ferric Compounds/chemistry , Iron Compounds/chemistry , Minerals/chemistry , Oxalic Acid/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Arsenic/isolation & purification , Groundwater , Hydrodynamics , Water Pollutants, Chemical/isolation & purification
17.
Environ Sci Technol ; 52(16): 9243-9253, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30039966

ABSTRACT

Recent laboratory studies have demonstrated that coinjection of nitrate and Fe(II) (as ferrous sulfate) to As-bearing sediments can produce an Fe mineral assemblage containing magnetite capable of immobilizing advected As under a relatively wide range of aquifer conditions. This study combined laboratory findings with process-based numerical modeling approaches, to quantify the observed Fe mineral (trans)formation and concomitant As partitioning dynamics and to assess potential nitrate-Fe(II) remediation strategies for field implementation. The model development was guided by detailed solution and sediment data from our well-controlled column experiment. The modeling results demonstrated that the fate of As during the experiment was primarily driven by ferrihydrite formation and reductive transformation and that different site densities were identified for natural and neoformed ferrihydrite to explain the observations both before and after nitrate-Fe(II) injection. Our results also highlighted that when ferrihydrite was nearing depletion, As immobilization ultimately relied on the presence of magnetite. On the basis of the column model, field-scale predictive simulations were conducted to illustrate the feasibility of the nitrate-Fe(II) strategy for intercepting advected As from a plume. The predictive simulations, which suggested that long-term As immobilization was feasible, favored a scenario that maintains high dissolved Fe(II) concentration during injection periods and thereby converts ferrihydrite to magnetite.


Subject(s)
Arsenic , Groundwater , Ferric Compounds , Ferrosoferric Oxide , Iron , Minerals , Oxidation-Reduction
18.
Chem Geol ; 476: 248-259, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29353912

ABSTRACT

The presence of ferrihydrite in sediments/soils is critical to the cycling of iron (Fe) and many other elements but difficult to quantify. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to speciate Fe in the solid phase, but this method is thought to have difficulties in distinguishing ferrihydrite from goethite and other minerals. In this study, both conventional EXAFS linear combination fitting (LCF) and the method of standard-additions are applied to the same samples in attempt to quantify ferrihydrite and goethite more rigorously. Natural aquifer sediments from Bangladesh and the United States were spiked with known quantities of ferrihydrite, goethite and magnetite, and analyzed by EXAFS. Known mineral mixtures were also analyzed. Evaluations of EXAFS spectra of mineral references and EXAFS-LCF fits on various samples indicate that ferrihydrite and microcrystalline goethite can be distinguished and quantified by EXAFS-LCF but that the choice of mineral references is critical to yield consistent results. Conventional EXAFS-LCF and the method of standard-additions both identified appreciable amount of ferrihydrite in Bangladesh sediments that were obtained from a low-arsenic Pleistocene aquifer. Ferrihydrite was also independently detected by sequential extraction and 57Fe MÓ§ssbauer spectroscopy. These observations confirm the accuracy of conventional EXAFS-LCF and demonstrate that combining EXAFS with additions of reference materials provides a more robust means of quantifying short-range-ordered minerals in complex samples.

19.
Sci Total Environ ; 618: 579-585, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29102200

ABSTRACT

Arsenic (As) groundwater contamination is common yet spatially heterogeneous within most environments. It is therefore necessary to measure As concentrations to determine whether a water source is safe to drink. Measurement of As in the field involves using a test strip that changes color in the presence of As. These tests are relatively inexpensive, but results are subjective and provide binned categorical data rather than exact determinations of As concentration. The goal of this work was to determine if photos of field kit test strips taken on mobile phone cameras could be used to extract more precise, continuous As concentrations. As concentrations for 376 wells sampled from Araihazar, Bangladesh were analyzed using ICP-MS, field kit and the new mobile phone photo method. Results from the field and lab indicate that normalized RGB color data extracted from images were able to accurately predict As concentrations as measured by ICP-MS, achieving detection limits of 9.2µg/L, and 21.9µg/L for the lab and field respectively. Data analysis is most consistent in the laboratory, but can successfully be carried out offline following image analysis, or on the mobile phone using basic image analysis software. The accuracy of the field method was limited by variability in image saturation, and variation in the illumination spectrum (lighting) and camera response. This work indicates that mobile phone cameras can be used as an analytical tool for quantitative measures of As and could change how water samples are analyzed in the field more widely, and that modest improvements in the consistency of photographic image collection and processing could yield measurements that are both accurate and precise.

20.
Appl Geochem ; 77: 24-30, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29238131

ABSTRACT

The sediments of Union Lake in Southern New Jersey are contaminated with arsenic released from the Vineland Chemical Company Superfund site 11 km upstream. Seasonal anoxia has been shown to release arsenic from sediments to similar lakes; this process was hypothesized as a major arsenic source to Union Lake. Data indicate, however, that releases of arsenic to bottom waters from the sediments or from pore waters within the sediments are relatively minor: bottom water arsenic concentrations reached ~30 ppb (~12 µM) at most, representing <13% of the dissolved arsenic content of the lake. Manganese concentrations increase more quickly and to higher levels than arsenic and iron concentrations; maximum [Mn]= ~13 ppm (~250 µM), maximum [Fe] = ~6 ppm (~120 µM). Incubation experiments support the hypothesis that manganese acts as a redox buffer and prevents large arsenic releases. Under the observed conditions, little of the arsenic in the water column is from contaminated sediment. This study also suggests that arsenic release from sediment to lake water may be more important in lakes that remain anoxic more continuously.

SELECTION OF CITATIONS
SEARCH DETAIL
...