Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1163339, 2023.
Article in English | MEDLINE | ID: mdl-37123274

ABSTRACT

The sinoatrial node (SAN) and subsidiary pacemakers in the cardiac conduction system generate spontaneous electrical activity which is indispensable for electrical and therefore contractile function of the heart. The hyperpolarisation-activated cyclic nucleotide-gated channel HCN4 is responsible for genesis of the pacemaker "funny" current during diastolic depolarisation. S-palmitoylation, the reversible conjugation of the fatty acid palmitate to protein cysteine sulfhydryls, regulates the activity of key cardiac Na+ and Ca2+ handling proteins, influencing their membrane microdomain localisation and function. We investigated HCN4 palmitoylation and its functional consequences in engineered human embryonic kidney 293T cells as well as endogenous HCN4 in neonatal rat ventricular myocytes. HCN4 was palmitoylated in all experimental systems investigated. We mapped the HCN4 palmitoylation sites to a pair of cysteines in the HCN4 intracellular amino terminus. A double cysteine-to-alanine mutation CC93A/179AA of full length HCN4 caused a ∼67% reduction in palmitoylation in comparison to wild type HCN4. We used whole-cell patch clamp to evaluate HCN4 current (IHCN4) in stably transfected 293T cells. Removal of the two N-terminal palmitoylation sites did not significantly alter half maximal activation voltage of IHCN4 or the activation slope factor. IHCN4 was significantly larger in cells expressing wild type compared to non-palmitoylated HCN4 across a range of voltages. Phylogenetic analysis revealed that although cysteine 93 is widely conserved across all classes of HCN4 vertebrate orthologs, conservation of cysteine 179 is restricted to placental mammals. Collectively, we provide evidence for functional regulation of HCN4 via palmitoylation of its amino terminus in vertebrates. We suggest that by recruiting the amino terminus to the bilayer, palmitoylation enhances the magnitude of HCN4-mediated currents, but does not significantly affect the kinetics.

2.
Proc Natl Acad Sci U S A ; 120(7): e2207887120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745790

ABSTRACT

Mammalian voltage-activated L-type Ca2+ channels, such as Ca(v)1.2, control transmembrane Ca2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current-voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca2+ channels in excitable cells.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Rats , Humans , Rabbits , Animals , Myocytes, Cardiac/metabolism , Calcium/metabolism , Lipoylation , Calcium Channels, L-Type/metabolism , Induced Pluripotent Stem Cells/metabolism , Calcium, Dietary , Mammals/metabolism
3.
Front Physiol ; 13: 1023237, 2022.
Article in English | MEDLINE | ID: mdl-36277202

ABSTRACT

S-palmitoylation is an essential lipid modification catalysed by zDHHC-palmitoyl acyltransferases that regulates the localisation and activity of substrates in every class of protein and tissue investigated to date. In the heart, S-palmitoylation regulates sodium-calcium exchanger (NCX1) inactivation, phospholemman (PLM) inhibition of the Na+/K+ ATPase, Nav1.5 influence on membrane excitability and membrane localisation of heterotrimeric G-proteins. The cell surface localised enzyme zDHHC5 palmitoylates NCX1 and PLM and is implicated in injury during anoxia/reperfusion. Little is known about how palmitoylation remodels in cardiac diseases. We investigated expression of zDHHC5 in animal models of left ventricular hypertrophy (LVH) and heart failure (HF), along with HF tissue from humans. zDHHC5 expression increased rapidly during onset of LVH, whilst HF was associated with decreased zDHHC5 expression. Paradoxically, palmitoylation of the zDHHC5 substrate NCX1 was significantly reduced in LVH but increased in human HF, while palmitoylation of the zDHHC5 substrate PLM was unchanged in all settings. Overexpression of zDHHC5 in rabbit ventricular cardiomyocytes did not alter palmitoylation of its substrates or overall cardiomyocyte contractility, suggesting changes in zDHHC5 expression in disease may not be a primary driver of pathology. zDHHC5 itself is regulated by post-translational modifications, including palmitoylation in its C-terminal tail. We found that in HF palmitoylation of zDHHC5 changed in the same manner as palmitoylation of NCX1, suggesting additional regulatory mechanisms may be involved. This study provides novel evidence that palmitoylation of cardiac substrates is altered in the setting of HF, and that expression of zDHHC5 is dysregulated in both hypertrophy and HF.

4.
Cell Calcium ; 106: 102639, 2022 09.
Article in English | MEDLINE | ID: mdl-36027648

ABSTRACT

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Subject(s)
Lipoylation , TRPM Cation Channels , Calcium/metabolism , Cations/metabolism , Phosphorylation , Signal Transduction , TRPM Cation Channels/metabolism
5.
FEBS J ; 289(4): 861-882, 2022 02.
Article in English | MEDLINE | ID: mdl-33624421

ABSTRACT

The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.


Subject(s)
Lipids/chemistry , Protein S/metabolism , Animals , Humans , Lipid Metabolism , Lipoylation
6.
Cell Calcium ; 97: 102408, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33873072

ABSTRACT

Catalyzed by zDHHC-PAT enzymes and reversed by thioesterases, protein palmitoylation is the only post-translational modification recognized to regulate the sodium/calcium exchanger NCX1. NCX1 palmitoylation occurs at a single site at position 739 in its large regulatory intracellular loop. An amphipathic ɑ-helix between residues 740-756 is a critical for NCX1 palmitoylation. Given the rich background of the structural elements involving in NCX1 palmitoylation, the molecular basis of NCX1 palmitoylation is still relatively poorly understood. Here we found that (1) the identity of palmitoylation machinery of NCX1 controls its spatial organization within the cell, (2) the NCX1 amphipathic ɑ-helix directly interacts with zDHHC-PATs, (3) NCX1 is still palmitoylated when it is arrested in either Golgi or ER, indicating that NCX1 is a substrate for multiple zDHHC-PATs, (4) the thioesterase APT1 but not APT2 as a part of NCX1-depalmitoylation machinery governs subcellular organization of NCX1, (5) APT1 catalyzes NCX1 depalmitoylation in the Golgi but not in the ER. We also report that NCX2 and NCX3 are dually palmitoylated, with important implications for substrate recognition and enzyme catalysis by zDHHC-PATs. Our results could support new molecular or pharmacological strategies targeting the NCX1 palmitoylation and depalmitoylation machinery.

8.
Cell Signal ; 76: 109788, 2020 12.
Article in English | MEDLINE | ID: mdl-32976931

ABSTRACT

Cardiac myosin binding protein-C (cMyBP-C) is a fundamental component of the cardiac sarcomere involved in regulating systolic and diastolic activity, processes which must be tightly maintained to preserve cardiac function. Importantly, as a non-enzymatic protein, cMyBP-C relies solely on post-translational modifications and protein-protein interactions in order to modulate its function, and does so through phosphorylation, glutathionylation and acetylation amongst others. Although some are better understood than others, these modifications may represent novel therapeutic routes to modulate cMyBP-C function in the treatment of cardiac disease.


Subject(s)
Carrier Proteins/physiology , Heart Failure/metabolism , Myocardium , Sarcomeres/metabolism , Animals , Humans , Myocardium/cytology , Myocardium/metabolism , Myocardium/pathology , Protein Binding , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...