Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Med Genet A ; 191(2): 510-517, 2023 02.
Article in English | MEDLINE | ID: mdl-36401557

ABSTRACT

Clinical exome sequencing (ES) is the most comprehensive genomic test to identify underlying genetic diseases in Canada. We performed this retrospective cohort study to investigate the diagnostic yield of clinical ES in adulthood. Inclusion criteria were: (1) Adult patients ≥18 years old; (2) Patients underwent clinical ES between January 1 and December 31, 2021; (3) Patients were seen in the Department of Medical Genetics. We reviewed patient charts. We applied American College of Medical Genetics and Genomics and the Association for Molecular Pathology variant classification guidelines for interpretation of variants. Non-parametric Fisher's exact statistical test was used. Seventy-seven patients underwent clinical ES. Fourteen different genetic diseases were confirmed in 15 patients: FBXO11, MYH7, MED13L, NSD2, ANKRD11 (n = 2), SHANK3, RHOBTB2, CDKL5, TRIO, TCF4, SCN1, SMAD3, POGZ, and EIF2B3 diseases. The diagnostic yield of clinical ES was 19.5%. Patients with a genetic diagnosis had a significantly higher frequency of neurodevelopmental disorders than those with no genetic diagnosis (p = 0.00339). The diagnostic yield of clinical ES was the highest in patients with seizures (35.7%), and with progressive neurodegenerative diseases (33.3%). Clinical ES is a helpful genomic test to provide genetic diagnoses to the patients who are referred to medical genetic clinics due to suspected genetic diseases in adulthood to end their diagnostic odyssey. Targeted next generation sequencing panels for specific phenotypes may decrease the cost of genomic test in adulthood.


Subject(s)
Genetics, Medical , Neurodevelopmental Disorders , Humans , Exome Sequencing , Genetic Testing , Neurodevelopmental Disorders/genetics , Phenotype , Retrospective Studies
2.
Mol Neurodegener ; 17(1): 82, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36514132

ABSTRACT

BACKGROUND: Microglia regulate the response to injury and disease in the brain and spinal cord. In white matter diseases microglia may cause demyelination. However, how microglia respond and regulate demyelination is not fully understood. METHODS: To understand how microglia respond during demyelination, we fed mice cuprizone-a potent demyelinating agent-and assessed the dynamics of genetically fate-mapped microglia. We then used single-cell RNA sequencing to identify and track the microglial subpopulations that arise during demyelination. To understand how microglia contribute to the clearance of dead oligodendrocytes, we ablated microglia starting at the peak of cuprizone-induced cell death and used the viability dye acridine orange to monitor apoptotic and lytic cell morphologies after microglial ablation. Lastly, we treated serum-free primary microglial cultures to model distinct aspects of cuprizone-induced demyelination and assessed the response. RESULTS: The cuprizone diet generated a robust microglial response by week 4 of the diet. Single-cell RNA sequencing at this time point revealed the presence of several cuprizone-associated microglia (CAM) clusters. These clusters expressed a transcriptomic signature indicative of cytokine regulation and reactive oxygen species production with altered lysosomal and metabolic changes consistent with ongoing phagocytosis. Using acridine orange to monitor apoptotic and lytic cell death after microglial ablation, we found that microglia preferentially phagocytose lytic carcasses. In culture, microglia exposed to lytic carcasses partially recapitulated the CAM state, suggesting that phagocytosis contributes to this distinct microglial state during cuprizone demyelination. CONCLUSIONS: Microglia serve multiple roles during demyelination, yet their transcriptomic state resembles other neurodegenerative conditions. The phagocytosis of cellular debris is likely a universal cause for a common neurodegenerative microglial state.


Subject(s)
Cuprizone , Demyelinating Diseases , Animals , Mice , Cuprizone/toxicity , Cuprizone/metabolism , Microglia/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Transcriptome , Acridine Orange/adverse effects , Acridine Orange/metabolism , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL