Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301653

ABSTRACT

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Subject(s)
B-Lymphocytes , Palatine Tonsil , Humans , Adult , B-Lymphocytes/metabolism
2.
Semin Hematol ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38151379

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by widespread alterations in the genetic and epigenetic landscapes which seem to underlie the variable clinical manifestations observed in patients. Over the last decade, epigenomic studies have described the whole-genome maps of DNA methylation and chromatin features of CLL and normal B cells, identifying distinct epigenetic mechanisms operating in tumoral cells. DNA methylation analyses have identified that the CLL methylome contains imprints of the cell of origin, as well as of the proliferative history of the tumor cells, with both being strong independent prognostic predictors. Moreover, single-cell analysis revealed a higher degree of DNA methylation noise in CLL cells, which associates with transcriptional plasticity and disease aggressiveness. Integrative analysis of chromatin has uncovered chromatin signatures, as well as regulatory regions specifically active in each CLL subtype or in Richter transformed samples. Unique transcription factor (TF) binding motifs are overrepresented on those regions, suggesting that altered TF networks operate from disease initiation to progression as nongenetic factors mediating the oncogenic transcriptional profiles. Multiomics analysis has identified that response to treatment is modulated by an epigenetic imprint, and that treatments affect chromatin through the activity of particular set of TFs. Additionally, the epigenome is an axis of therapeutic vulnerability in CLL, as it can be targeted by inhibitors of histone modifying enzymes, that have shown promising preclinical results. Altogether, this review aims at summarizing the major findings derived from published literature to distill how altered epigenomic mechanisms contribute to CLL origin, evolution, clinical behavior, and response to treatment.

3.
Cancer Cell ; 41(12): 2136-2153.e13, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37995682

ABSTRACT

CCS1477 (inobrodib) is a potent, selective EP300/CBP bromodomain inhibitor which induces cell-cycle arrest and differentiation in hematologic malignancy model systems. In myeloid leukemia cells, it promotes rapid eviction of EP300/CBP from an enhancer subset marked by strong MYB occupancy and high H3K27 acetylation, with downregulation of the subordinate oncogenic network and redistribution to sites close to differentiation genes. In myeloma cells, CCS1477 induces eviction of EP300/CBP from FGFR3, the target of the common (4; 14) translocation, with redistribution away from IRF4-occupied sites to TCF3/E2A-occupied sites. In a subset of patients with relapsed or refractory disease, CCS1477 monotherapy induces differentiation responses in AML and objective responses in heavily pre-treated multiple myeloma. In vivo preclinical combination studies reveal synergistic responses to treatment with standard-of-care agents. Thus, CCS1477 exhibits encouraging preclinical and early-phase clinical activity by disrupting recruitment of EP300/CBP to enhancer networks occupied by critical transcription factors.


Subject(s)
Hematologic Neoplasms , Nuclear Proteins , Humans , Cell Line, Tumor , Transcription Factors , Protein Domains , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , E1A-Associated p300 Protein
5.
Nat Commun ; 13(1): 6220, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266281

ABSTRACT

Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.


Subject(s)
Lymphoma , Receptor, Notch1 , Humans , Receptor, Notch1/metabolism , B7-H1 Antigen/metabolism , Interferon-gamma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epigenesis, Genetic , Signal Transduction , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Lymphoma/genetics
6.
Oncogene ; 41(44): 4841-4854, 2022 10.
Article in English | MEDLINE | ID: mdl-36171271

ABSTRACT

Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.


Subject(s)
Histone Demethylases , Leukemia, Myeloid, Acute , Humans , Cell Differentiation/genetics , Chromatin/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Hemasphere ; 6(1): e673, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34964039
9.
Leukemia ; 34(5): 1266-1277, 2020 05.
Article in English | MEDLINE | ID: mdl-31780813

ABSTRACT

The histone demethylase lysine-specific demethylase 1 (LSD1 or KDM1A) has emerged as a candidate therapeutic target in acute myeloid leukaemia (AML); tranylcypromine-derivative inhibitors induce loss of clonogenic activity and promote differentiation, in particular in the MLL-translocated molecular subtype of AML. In AML, the use of drugs in combination often delivers superior clinical activity. To identify genes and cellular pathways that collaborate with LSD1 to maintain the leukaemic phenotype, and which could be targeted by combination therapies, we performed a genome-wide CRISPR-Cas9 dropout screen. We identified multiple components of the amino acid sensing arm of mTORC1 signalling-RRAGA, MLST8, WDR24 and LAMTOR2-as cellular sensitizers to LSD1 inhibition. Knockdown of mTORC1 components, or mTORC1 pharmacologic inhibition, in combination with LSD1 inhibition enhanced differentiation in both cell line and primary cell settings, in vitro and in vivo, and substantially reduced the frequency of clonogenic primary human AML cells in a modelled minimal residual disease setting. Synergistic upregulation of a set of transcription factor genes associated with terminal monocytic lineage differentiation was observed. Thus, dual mTORC1 and LSD1 inhibition represents a candidate combination approach for enhanced differentiation in MLL-translocated AML which could be evaluated in early phase clinical trials.


Subject(s)
Everolimus/pharmacology , Histone Demethylases/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/drug therapy , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Myeloid-Lymphoid Leukemia Protein/genetics , Translocation, Genetic , Tranylcypromine/pharmacology , Animals , Antidepressive Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Drug Therapy, Combination , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Mol Cell Oncol ; 5(4): e1481813, 2018.
Article in English | MEDLINE | ID: mdl-30250927

ABSTRACT

Pharmacologic inhibition of KDM1A (Lysine Demethylase 1A) induces differentiation in certain subtypes of acute myeloid leukemia. Our recent studies reveal this is dependent upon drug-induced disruption of the GFI1 (Growth Factor Independent 1) transcription repressor complex, leading to activation of enhancers distributed close to genes controlling monocytic lineage differentiation.

11.
Cell Rep ; 22(13): 3641-3659, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590629

ABSTRACT

Pharmacologic inhibition of LSD1 promotes blast cell differentiation in acute myeloid leukemia (AML) with MLL translocations. The assumption has been that differentiation is induced through blockade of LSD1's histone demethylase activity. However, we observed that rapid, extensive, drug-induced changes in transcription occurred without genome-wide accumulation of the histone modifications targeted for demethylation by LSD1 at sites of LSD1 binding and that a demethylase-defective mutant rescued LSD1 knockdown AML cells as efficiently as wild-type protein. Rather, LSD1 inhibitors disrupt the interaction of LSD1 and RCOR1 with the SNAG-domain transcription repressor GFI1, which is bound to a discrete set of enhancers located close to transcription factor genes that regulate myeloid differentiation. Physical separation of LSD1/RCOR1 from GFI1 is required for drug-induced differentiation. The consequent inactivation of GFI1 leads to increased enhancer histone acetylation within hours, which directly correlates with the upregulation of nearby subordinate genes.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Transcription Factors/antagonists & inhibitors , Cell Differentiation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
12.
J Med Chem ; 60(19): 7984-7999, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28892629

ABSTRACT

Inhibition of lysine specific demethylase 1 (LSD1) has been shown to induce the differentiation of leukemia stem cells in acute myeloid leukemia (AML). Irreversible inhibitors developed from the nonspecific inhibitor tranylcypromine have entered clinical trials; however, the development of effective reversible inhibitors has proved more challenging. Herein, we describe our efforts to identify reversible inhibitors of LSD1 from a high throughput screen and subsequent in silico modeling approaches. From a single hit (12) validated by biochemical and biophysical assays, we describe our efforts to develop acyclic scaffold-hops from GSK-690 (1). A further scaffold modification to a (4-cyanophenyl)glycinamide (e.g., 29a) led to the development of compound 32, with a Kd value of 32 nM and an EC50 value of 0.67 µM in a surrogate cellular biomarker assay. Moreover, this derivative does not display the same level of hERG liability as observed with 1 and represents a promising lead for further development.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Histone Demethylases/antagonists & inhibitors , Leukemia/drug therapy , Spiro Compounds/pharmacology , Biomarkers , Cell Line, Tumor , Computer Simulation , Drug Design , Drug Discovery , Ether-A-Go-Go Potassium Channels/drug effects , Glycine/chemical synthesis , Glycine/pharmacology , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Docking Simulation , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Tranylcypromine/analogs & derivatives , Tranylcypromine/chemistry , Tranylcypromine/pharmacology
13.
Bioorg Med Chem Lett ; 27(14): 3190-3195, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28545974

ABSTRACT

A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound.


Subject(s)
Histone Demethylases/antagonists & inhibitors , Pyrazoles/chemistry , Animals , B7-2 Antigen/metabolism , Binding Sites , Catalytic Domain , Cell Differentiation/drug effects , Cell Line , Half-Life , Histone Demethylases/metabolism , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Structure-Activity Relationship , Surface Plasmon Resonance
14.
Epigenomics ; 8(8): 1103-16, 2016 08.
Article in English | MEDLINE | ID: mdl-27479862

ABSTRACT

LSD1 (KDM1A; BHC110; AOF2) was the first protein reported to exhibit histone demethylase activity and has since been shown to have multiple essential roles in mammalian biology. Given its enzymatic activity and its high-level expression in many human malignancies, a significant recent focus has been the development of pharmacologic inhibitors. Here we summarize structural and biochemical knowledge of this important epigenetic regulator, with a particular emphasis on the functional and preclinical studies in oncology that have provided justification for the evaluation of tranylcypromine derivative LSD1 inhibitors in early phase clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/chemistry , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Molecular Targeted Therapy/methods
16.
Blood ; 123(11): 1729-38, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24449215

ABSTRACT

RUNX1/CBFß (core binding factor [CBF]) is a heterodimeric transcription factor complex that is frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. The MLL protein interacts with RUNX1 and prevents RUNX1 from ubiquitin-mediated degradation. RUNX1/CBFß recruits MLL to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFß activity has not been fully understood. In this report, we show that MLL fusion proteins and the N-terminal MLL portion of MLL fusions downregulate RUNX1 and CBFß protein expression via the MLL CXXC domain and flanking regions. We confirmed this finding in Mll-Af9 knock-in mice and human M4/M5 acute myeloid leukemia (AML) cell lines, with or without MLL translocations, showing that MLL translocations cause a hypomorph phenotype of RUNX1/CBFß. Overexpression of RUNX1 inhibits the development of AML in Mll-Af9 knock-in mice; conversely, further reducing Runx1/Cbfß levels accelerates MLL-AF9-mediated AML in bone marrow transplantation assays. These data reveal a newly defined negative regulation of RUNX1/CBFß by MLL fusion proteins and suggest that targeting RUNX1/CBFß levels may be a potential therapy for MLLs.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/physiology , Animals , Blotting, Western , Bone Marrow Transplantation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Phenotype , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Translocation, Genetic
17.
Haematologica ; 97(4): 534-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22102704

ABSTRACT

The disruption of RUNX1 function is one of the main mechanisms of disease observed in hematopoietic malignancies and the description of novel genetic events that lead to a RUNX1 loss of function has been accelerated with the development of genomic technologies. Here we describe the molecular characterization of a new t(4;21)(q21;q22) in a de novo myelodysplastic syndrome that resulted in the deletion of the RUNX1 gene. We demonstrated by quantitative real-time RT-PCR an almost complete depletion of the expression of the RUNX1 gene in our t(4;21) case compared with CD34(+) cells that was independent of mutation or DNA methylation. More importantly, we explored and confirmed the possibility that this abrogation also prevented transactivation of RUNX1 target genes, perhaps confirming the genetic origin of the thrombocytopenia and the myelodysplastic features observed in our patient, and certainly mimicking what has been observed in the presence of the RUNX1/ETO fusion protein.


Subject(s)
Gene Expression , Myelodysplastic Syndromes/genetics , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics , Translocation, Genetic , Chromosome Banding , Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 4 , Humans , Male , Middle Aged , RUNX1 Translocation Partner 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...