Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39041028

ABSTRACT

CITE-seq enables paired measurement of surface protein and mRNA expression in single cells using antibodies conjugated to oligonucleotide tags. Due to the high copy number of surface protein molecules, sequencing antibody-derived tags (ADTs) allows for robust protein detection, improving cell-type identification. However, variability in antibody staining leads to batch effects in the ADT expression, obscuring biological variation, reducing interpretability, and obstructing cross-study analyses. Here, we present ADTnorm (https://github.com/yezhengSTAT/ADTnorm), a normalization and integration method designed explicitly for ADT abundance. Benchmarking against 14 existing scaling and normalization methods, we show that ADTnorm accurately aligns populations with negative- and positive-expression of surface protein markers across 13 public datasets, effectively removing technical variation across batches and improving cell-type separation. ADTnorm enables efficient integration of public CITE-seq datasets, each with unique experimental designs, paving the way for atlas-level analyses. Beyond normalization, ADTnorm includes built-in utilities to aid in automated threshold-gating as well as assessment of antibody staining quality for titration optimization and antibody panel selection. Applying ADTnorm to a published COVID-19 CITE-seq dataset allowed for identifying previously undetected disease-associated markers, illustrating a broad utility in biological applications.

2.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915597

ABSTRACT

Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-ß1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.

3.
Cytometry A ; 105(6): 430-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634730

ABSTRACT

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.


Subject(s)
Dendritic Cells , Flow Cytometry , Immunophenotyping , T-Lymphocytes , Humans , Dendritic Cells/immunology , Dendritic Cells/cytology , Flow Cytometry/methods , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology , Immune System/cytology , Phenotype , Biomarkers
4.
Cytometry A ; 105(5): 388-393, 2024 05.
Article in English | MEDLINE | ID: mdl-38317641

ABSTRACT

The objective of titrating fluorochrome-labeled antibodies is to identify the optimal concentration for a given marker-fluorochrome pair that results in the best possible separation between the positive and negative cell populations, while minimizing the background within the negative population. Best practices in flow cytometry dictate that each new lot of antibody should be titrated on the sample of interest. However, many researchers routinely use large (30+) color panels due to recent technical advancements in fluorescence-based cytometry instrumentation which quickly leads to an unmanageable number of individual titrations. In this technical note, we provide evidence that antibodies can be effectively titrated in groups rather than individually, resulting in considerable time and cost savings. This approach streamlines the process, without compromising data quality, thereby enhancing the efficiency of setting up high-parameter cytometry experiments.


Subject(s)
Antibodies , Flow Cytometry , Fluorescent Dyes , Flow Cytometry/methods , Humans , Fluorescent Dyes/chemistry , Antibodies/immunology
6.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168221

ABSTRACT

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in tissue biopsies and other human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.

8.
Nature ; 605(7911): 728-735, 2022 05.
Article in English | MEDLINE | ID: mdl-35545675

ABSTRACT

Immunotherapies have achieved remarkable successes in the treatment of cancer, but major challenges remain1,2. An inherent weakness of current treatment approaches is that therapeutically targeted pathways are not restricted to tumours, but are also found in other tissue microenvironments, complicating treatment3,4. Despite great efforts to define inflammatory processes in the tumour microenvironment, the understanding of tumour-unique immune alterations is limited by a knowledge gap regarding the immune cell populations in inflamed human tissues. Here, in an effort to identify such tumour-enriched immune alterations, we used complementary single-cell analysis approaches to interrogate the immune infiltrate in human head and neck squamous cell carcinomas and site-matched non-malignant, inflamed tissues. Our analysis revealed a large overlap in the composition and phenotype of immune cells in tumour and inflamed tissues. Computational analysis identified tumour-enriched immune cell interactions, one of which yields a large population of regulatory T (Treg) cells that is highly enriched in the tumour and uniquely identified among all haematopoietically-derived cells in blood and tissue by co-expression of ICOS and IL-1 receptor type 1 (IL1R1). We provide evidence that these intratumoural IL1R1+ Treg cells had responded to antigen recently and demonstrate that they are clonally expanded with superior suppressive function compared with IL1R1- Treg cells. In addition to identifying extensive immunological congruence between inflamed tissues and tumours as well as tumour-specific changes with direct disease relevance, our work also provides a blueprint for extricating disease-specific changes from general inflammation-associated patterns.


Subject(s)
Neoplasms , Humans , Immunotherapy , Inflammation , Neoplasms/pathology , T-Lymphocytes, Regulatory , Tumor Microenvironment
9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35105810

ABSTRACT

Competition between antigen-specific T cells for peptide:MHC complexes shapes the ensuing T cell response. Mouse model studies provided compelling evidence that competition is a highly effective mechanism controlling the activation of naïve T cells. However, assessing the effect of T cell competition in the context of a human infection requires defined pathogen kinetics and trackable naïve and memory T cell populations of defined specificity. A unique cohort of nonmyeloablative hematopoietic stem cell transplant patients allowed us to assess T cell competition in response to cytomegalovirus (CMV) reactivation, which was documented with detailed virology data. In our cohort, hematopoietic stem cell transplant donors and recipients were CMV seronegative and positive, respectively, thus providing genetically distinct memory and naïve T cell populations. We used single-cell transcriptomics to track donor versus recipient-derived T cell clones over the course of 90 d. We found that donor-derived T cell clones proliferated and expanded substantially following CMV reactivation. However, for immunodominant CMV epitopes, recipient-derived memory T cells remained the overall dominant population. This dominance was maintained despite more robust clonal expansion of donor-derived T cells in response to CMV reactivation. Interestingly, the donor-derived T cells that were recruited into these immunodominant memory populations shared strikingly similar TCR properties with the recipient-derived memory T cells. This selective recruitment of identical and nearly identical clones from the naïve into the immunodominant memory T cell pool suggests that competition is in place but does not interfere with rejuvenating a memory T cell population. Instead, it results in selection of convergent clones to the memory T cell pool.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Hematopoietic Stem Cell Transplantation , Memory T Cells/immunology , Tissue Donors , Virus Activation/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
10.
Sci Adv ; 7(46): eabj0274, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757794

ABSTRACT

Despite recent studies of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little is known about how the immune response against SARS-CoV-2 differs from other respiratory infections. We compare the immune signature from hospitalized SARS-CoV-2­infected patients to patients hospitalized prepandemic with influenza or respiratory syncytial virus (RSV). Our in-depth profiling indicates that the immune landscape in SARS-CoV-2 patients is largely similar to flu or RSV patients. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated COVID-19 severity. These findings are relevant as Tregs are considered for therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of flu and RSV infections could be leveraged to identify common treatment strategies.

11.
Sci Immunol ; 6(65): eabf3111, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797691

ABSTRACT

Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB­inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell­dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.


Subject(s)
Autoimmunity , Epithelial Cells/immunology , Forkhead Transcription Factors/immunology , Protein Serine-Threonine Kinases/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , Humans , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/deficiency , Thymus Gland/cytology , NF-kappaB-Inducing Kinase
13.
J Immunol ; 206(12): 2937-2948, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34088770

ABSTRACT

Tissue-resident memory CD8 T cells (CD8 TRM) are critical for maintaining barrier immunity. CD8 TRM have been mainly studied in the skin, lung and gut, with recent studies suggesting that the signals that control tissue residence and phenotype are highly tissue dependent. We examined the T cell compartment in healthy human cervicovaginal tissue (CVT) and found that most CD8 T cells were granzyme B+ and TCF-1- To address if this phenotype is driven by CVT tissue residence, we used a mouse model to control for environmental factors. Using localized and systemic infection models, we found that CD8 TRM in the mouse CVT gradually acquired a granzyme B+, TCF-1- phenotype as seen in human CVT. In contrast to CD8 TRM in the gut, these CD8 TRM were not stably maintained regardless of the initial infection route, which led to reductions in local immunity. Our data show that residence in the CVT is sufficient to progressively shape the size and function of its CD8 TRM compartment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cervix Uteri/immunology , Herpes Simplex/immunology , Vagina/immunology , Adult , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cervix Uteri/drug effects , Cervix Uteri/virology , Female , Herpes Simplex/drug therapy , Herpes Simplex/virology , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/immunology , Humans , Injections, Subcutaneous , Medroxyprogesterone Acetate/administration & dosage , Medroxyprogesterone Acetate/pharmacology , Mice , Mice, Inbred C57BL , Vagina/drug effects , Vagina/virology , Young Adult
14.
medRxiv ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33791720

ABSTRACT

SARS-CoV-2 infection has caused a lasting global pandemic costing millions of lives and untold additional costs. Understanding the immune response to SARS-CoV-2 has been one of the main challenges in the past year in order to decipher mechanisms of host responses and interpret disease pathogenesis. Comparatively little is known in regard to how the immune response against SARS-CoV-2 differs from other respiratory infections. In our study, we compare the peripheral blood immune signature from SARS-CoV-2 infected patients to patients hospitalized pre-pandemic with Influenza Virus or Respiratory Syncytial Virus (RSV). Our in-depth profiling indicates that the immune landscape in patients infected by SARS-CoV-2 is largely similar to patients hospitalized with Flu or RSV. Similarly, serum cytokine and chemokine expression patterns were largely overlapping. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease state were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated with the severity of COVID-19 disease. These findings are particularly relevant as Tregs are being discussed as a therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of Flu and RSV infections could be leveraged to identify common treatment strategies. HIGHLIGHTS: The immune landscapes of hospitalized pre-pandemic RSV and influenza patients are similar to SARS-CoV-2 patientsSerum cytokine and chemokine expression patterns are largely similar between patients hospitalized with respiratory virus infections, including SARS-CoV-2, versus healthy donorsSARS-CoV-2 patients with the most critical disease displayed unique changes in the Treg compartmentadvances in understanding and treating SARS-CoV-2 could be leveraged for other common respiratory infections.

15.
Cytometry A ; 99(3): 231-242, 2021 03.
Article in English | MEDLINE | ID: mdl-33200508

ABSTRACT

Professional antigen-presenting cells (APCs), which include dendritic cells (DCs) and monocytes are essential for inducing and steering adaptive T-cell responses. Recent technological developments in single-cell analysis have significantly advanced our understanding of APC subset heterogeneity. To accurately resolve this functional diversity and to account for tissue-specific adaptation, novel phenotyping markers have been described more recently. While some of these largely overlap with traditionally used markers, more fine-grained phenotyping might be essential during inflammatory settings, where the traditional distinction between monocytes and dendritic cells has become blurred. Within this phenotype report, we provide a concise overview of traditional and recently described markers for the phenotyping of DCs and monocytes in the human system.


Subject(s)
Dendritic Cells , Monocytes , Humans , Phenotype , Single-Cell Analysis , T-Lymphocytes
16.
STAR Protoc ; 1(2)2020 09 18.
Article in English | MEDLINE | ID: mdl-33000001

ABSTRACT

By including oligonucleotide-labeled antibodies into high-throughput single-cell RNA-sequencing protocols, combined transcript and protein expression data can be acquired on the single-cell level. Here, we describe a protocol for the combined analysis of over 40 proteins and 400 genes on over 104 cells using the nano-well based Rhapsody platform. We also include a workflow for sample multiplexing, which uniquely identifies the initial source of cells (such as tissue type or donor) in the downstream analysis after upstream pooling. For complete information on the use and execution of this protocol, please refer to Mair et al. (2020).


Subject(s)
Gene Expression Profiling/methods , Proteins/analysis , Single-Cell Analysis/methods , Antibodies/immunology , Gene Expression/genetics , High-Throughput Nucleotide Sequencing/methods , Proteins/genetics , Proteins/immunology , Proteomics/methods , Sequence Analysis, RNA/methods , Transcriptome/genetics
17.
Cytometry A ; 97(10): 1052-1056, 2020 10.
Article in English | MEDLINE | ID: mdl-32978859

ABSTRACT

This 27-color panel has been validated and optimized to comprehensively profile natural killer (NK) cells isolated from human tumors using a collagenase Type II-based digestion protocol. We confirmed that detection of protein expression by antibodies used in our final panel was not affected during tissue digestion. During this evaluation process, we found that detection of CD56, a biomarker typically used to identify NK cells, was affected substantially by collagenase-based digestion. Thus, our panel is centered around expression of NKp46, which is sufficient to identify NK cells and not affected by the tissue collagenase digestion step. Our panel further includes biomarkers used to extrapolate NK-cell maturation, differentiation, migration, homing potential, and functional state. Our panel is intended to provide in-depth characterization of human NK cells isolated from tissues, which we specifically tested using oral squamous cell carcinomas tissues, but it is compatible with other tissues that can be dissociated with a collagenase Type II-based protocol. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Subject(s)
Killer Cells, Natural , Neoplasms , CD56 Antigen , Flow Cytometry , Humans , Immunophenotyping , Killer Cells, Natural/immunology
18.
Cell Rep ; 31(1): 107499, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268080

ABSTRACT

High-throughput single-cell RNA sequencing (scRNA-seq) has become a frequently used tool to assess immune cell heterogeneity. Recently, the combined measurement of RNA and protein expression was developed, commonly known as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq). Acquisition of protein expression data along with transcriptome data resolves some of the limitations inherent to only assessing transcripts but also nearly doubles the sequencing read depth required per single cell. Furthermore, there is still a paucity of analysis tools to visualize combined transcript-protein datasets. Here, we describe a targeted transcriptomics approach that combines an analysis of over 400 genes with simultaneous measurement of over 40 proteins on 2 × 104 cells in a single experiment. This targeted approach requires only about one-tenth of the read depth compared to a whole-transcriptome approach while retaining high sensitivity for low abundance transcripts. To analyze these multi-omic datasets, we adapted one-dimensional soli expression by nonlinear stochastic embedding (One-SENSE) for intuitive visualization of protein-transcript relationships on a single-cell level.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Computational Biology/methods , Epitopes/genetics , Gene Expression Profiling/methods , Humans , Proteomics , RNA/genetics , Software , Transcriptome
19.
Sci Transl Med ; 11(521)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801887

ABSTRACT

CCR5 is thought to play a central role in orchestrating migration of cells in response to inflammation. CCR5 antagonists can reduce inflammatory disease processes, which has led to an increased interest in using CCR5 antagonists in a wide range of inflammation-driven diseases. Paradoxically, these antagonists appear to function without negatively affecting host immunity at barrier sites. We reasoned that the resolution to this paradox may lie in the CCR5+ T cell populations that permanently reside in tissues. We used a single-cell analysis approach to examine the human CCR5+ T cell compartment in the blood, healthy, and inflamed mucosal tissues to resolve these seemingly contradictory observations. We found that 65% of the CD4 tissue-resident memory T (TRM) cell compartment expressed CCR5. These CCR5+ TRM cells were enriched in and near the epithelial layer and not only limited to TH1-type cells but also contained a large TH17-producing and a stable regulatory T cell population. The CCR5+ TRM compartment was stably maintained even in inflamed tissues including the preservation of TH17 and regulatory T cell populations. Further, using tissues from the CHARM-03 clinical trial, we found that CCR5+ TRM are preserved in human mucosal tissue during treatment with the CCR5 antagonist Maraviroc. Our data suggest that the human CCR5+ TRM compartment is functionally and spatially equipped to maintain barrier immunity even in the absence of CCR5-mediated, de novo T cell recruitment from the periphery.


Subject(s)
Cell Compartmentation , Inflammation/immunology , Receptors, CCR5/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Compartmentation/drug effects , Cytokines/biosynthesis , Female , Humans , Lectins, C-Type/metabolism , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Male , Maraviroc/pharmacology , Middle Aged , Mouth Mucosa/drug effects , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Transcriptome/genetics , Young Adult
20.
Methods Mol Biol ; 2032: 1-29, 2019.
Article in English | MEDLINE | ID: mdl-31522410

ABSTRACT

Recent technological advances have greatly diversified the platforms that are available for high-dimensional single-cell immunophenotyping, including mass cytometry, single-cell RNA sequencing, and fluorescent-based flow cytometry. The latter is currently the most commonly used approach, and modern instrumentation allows for the measurement of up to 30 parameters, revealing deep insights into the complexity of the immune system.Here, we provide a practical guidebook for the successful design and execution of complex fluorescence-based immunophenotyping panels. We address common misconceptions and caveats, and also discuss challenges that are associated with the quality control and analysis of these data sets.


Subject(s)
Flow Cytometry/methods , Immunophenotyping/methods , Molecular Biology/methods , Single-Cell Analysis/methods , Fluorescence , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL