Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 29(12): 121103, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31893672

ABSTRACT

Synchronization of a large ensemble of identical phase oscillators with a nonlocal kernel and a phase lag parameter α is investigated for the classical Kuramoto-Sakaguchi model on a ring. We demonstrate, for low enough coupling radius r and α below π/2, a phase transition between coherence and phase turbulence via so-called defect states, which arise at the early stage of the transition. The defect states are a novel object resulting from the concatenation of two or more uniformly twisted waves with different wavenumbers. Upon further increase of α, defects lose their stability and give rise to spatiotemporal intermittency, resulting eventually in developed phase turbulence. Simulations close to the thermodynamic limit indicate that this phase transition is characterized by nonuniversal critical exponents.

2.
Chaos ; 28(10): 101103, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30384630

ABSTRACT

We study how nonlinear delayed-feedback in the Ikeda model can induce solitary impulses, i.e., dissipative solitons. The states are clearly identified in a virtual space-time representation of the equations with delay, and we find that conditions for their appearance are bistability of a nonlinear function and negative character of the delayed feedback. Both dark and bright solitons are identified in numerical simulations and physical electronic experiment, showing an excellent qualitative correspondence and proving thereby the robustness of the phenomenon. Along with single spiking solitons, a variety of compound soliton-based structures is obtained in a wide parameter region on the route from the regular dynamics (two quiescent states) to developed spatiotemporal chaos. The number of coexisting soliton-based states is fast growing with delay, which can open new perspectives in the context of information storage.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 065201, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20866466

ABSTRACT

Chimera states are a recently new discovered dynamical phenomenon that appears in arrays of nonlocally coupled oscillators and displays a spatial pattern of coherent and incoherent regions. We report here an additional feature of this dynamical regime: an irregular motion of the position of the coherent and incoherent regions, i.e., we reveal the nature of the chimera as a spatiotemporal pattern with a regular macroscopic pattern in space, and an irregular motion in time. This motion is a finite-size effect that is not observed in the thermodynamic limit. We show that on a large time scale, it can be described as a Brownian motion. We provide a detailed study of its dependence on the number of oscillators N and the parameters of the system.


Subject(s)
Motion , Nonlinear Dynamics , Diffusion , Stochastic Processes , Time Factors
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(6 Pt 2): 066201, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21230717

ABSTRACT

Recently, we have presented spatially modulated delayed feedback as a novel mechanism, which generically generates chimera states, remarkable spatiotemporal patterns in which coherence coexists with incoherence [O. E. Omel'chenko, Phys. Rev. Lett. 100, 044105 (2008)]. Remarkably, such chimera states serve as a natural link between completely coherent states and completely incoherent states. So far, we have studied this mechanism with a self-consistency-based numerical analysis only. In contrast, in this paper we perform a thorough dynamical description and, in particular, a stability analysis of the emerging chimera states. For this, we apply a recently developed reduction procedure [A. Pikovsky and M. Rosenblum, Phys. Rev. Lett. 101, 264103 (2008)]. By combining analytical and numerical approaches, we systematically describe the relationship between the parameters of the delayed feedback on one hand and the properties of the chimera states on the other hand. We provide the general rules for an effective control and manipulation of the chimera states.


Subject(s)
Feedback , Models, Theoretical , Linear Models , Time Factors
5.
Phys Rev Lett ; 100(4): 044105, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352280

ABSTRACT

Chimera states are remarkable spatiotemporal patterns in which coherence coexists with incoherence. As yet, chimera states have been considered as nongeneric, since they emerge only for particular initial conditions. In contrast, we show here that in a network of globally coupled oscillators delayed feedback stimulation with realistic (i.e., spatially decaying) stimulation profile generically induces chimera states. Intriguingly, a bifurcation analysis reveals that these chimera states are the natural link between the coherent and the incoherent states.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 2): 066207, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677340

ABSTRACT

We present a simplified phase model for neuronal dynamics with spike timing-dependent plasticity (STDP). For asymmetric, experimentally observed STDP we find multistability: a coexistence of a fully synchronized, a fully desynchronized, and a variety of cluster states in a wide enough range of the parameter space. We show that multistability can occur only for asymmetric STDP, and we study how the coexistence of synchronization and desynchronization and clustering depends on the distribution of the eigenfrequencies. We test the efficacy of the proposed method on the Kuramoto model which is, de facto, one of the sample models for a description of the phase dynamics in neuronal ensembles.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 2): 065201, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16089804

ABSTRACT

A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems.

SELECTION OF CITATIONS
SEARCH DETAIL