Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cytotherapy ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38506770

ABSTRACT

Ex vivo resting culture is a standard procedure following genome editing in hematopoietic stem and progenitor cells (HSPCs). However, prolonged culture may critically affect cell viability and stem cell function. We investigated whether varying durations of culture resting times impact the engraftment efficiency of human CD34+ HSPCs edited at the BCL11A enhancer, a key regulator in the expression of fetal hemoglobin. We employed electroporation to introduce CRISPR-Cas9 components for BCL11A enhancer editing and compared outcomes with nonelectroporated (NEP) and electroporated-only (EP) control groups. Post-electroporation, we monitored cell viability, death rates, and the frequency of enriched hematopoietic stem cell (HSC) fractions (CD34+CD90+CD45RA- cells) over a 48-hour period. Our findings reveal that while the NEP group showed an increase in cell numbers 24 hours post-electroporation, both EP and BCL11A-edited groups experienced significant cell loss. Although CD34+ cell frequency remained high in all groups for up to 48 hours post-electroporation, the frequency of the HSC-enriched fraction was significantly lower in the EP and edited groups compared to the NEP group. In NBSGW xenograft mouse models, both conditioned with busulfan and nonconditioned, we found that immediate transplantation post-electroporation led to enhanced engraftment without compromising editing efficiency. Human glycophorin A+ (GPA+) red blood cells (RBCs) sorted from bone marrow of all BCL11A edited mice exhibited similar levels of γ-globin expression, regardless of infusion time. Our findings underscore the critical importance of optimizing the culture duration between genome editing and transplantation. Minimizing this interval may significantly enhance engraftment success and minimize cell loss without compromising editing efficiency. These insights offer a pathway to improve the success rates of genome editing in HSPCs, particularly for conditions like sickle cell disease.

2.
Mol Metab ; 76: 101780, 2023 10.
Article in English | MEDLINE | ID: mdl-37482187

ABSTRACT

OBJECTIVES: Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since ß-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS: NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS: Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while ß-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS: The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.


Subject(s)
Adipocytes , Signal Transduction , Mice , Humans , Animals , Nuclear Receptor Interacting Protein 1/metabolism , Mice, Obese , Adipocytes/metabolism , Obesity/metabolism , Thermogenesis/genetics
3.
bioRxiv ; 2023 May 27.
Article in English | MEDLINE | ID: mdl-37292647

ABSTRACT

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

4.
Mol Ther Methods Clin Dev ; 29: 483-493, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37273902

ABSTRACT

CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.

5.
Nucleic Acids Res ; 51(13): 6966-6980, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37246708

ABSTRACT

Prime editing systems have enabled the incorporation of precise edits within a genome without introducing double strand breaks. Previous studies defined an optimal primer binding site (PBS) length for the pegRNA of ∼13 nucleotides depending on the sequence composition. However, optimal PBS length characterization has been based on prime editing outcomes using plasmid or lentiviral expression systems. In this study, we demonstrate that for prime editor (PE) ribonucleoprotein complexes, the auto-inhibitory interaction between the PBS and the spacer sequence affects pegRNA binding efficiency and target recognition. Destabilizing this auto-inhibitory interaction by reducing the complementarity between the PBS-spacer region enhances prime editing efficiency in multiple prime editing formats. In the case of end-protected pegRNAs, a shorter PBS length with a PBS-target strand melting temperature near 37°C is optimal in mammalian cells. Additionally, a transient cold shock treatment of the cells post PE-pegRNA delivery further increases prime editing outcomes for pegRNAs with optimized PBS lengths. Finally, we show that prime editor ribonucleoprotein complexes programmed with pegRNAs designed using these refined parameters efficiently correct disease-related genetic mutations in patient-derived fibroblasts and efficiently install precise edits in primary human T cells and zebrafish.


Subject(s)
Cold Temperature , Gene Editing , Zebrafish , Animals , Humans , Binding Sites , Cold-Shock Response , CRISPR-Cas Systems , Mammals , Ribonucleoproteins , Zebrafish/genetics
6.
Nat Genet ; 55(1): 34-43, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36522432

ABSTRACT

CRISPR gene editing holds great promise to modify DNA sequences in somatic cells to treat disease. However, standard computational and biochemical methods to predict off-target potential focus on reference genomes. We developed an efficient tool called CRISPRme that considers single-nucleotide polymorphism (SNP) and indel genetic variants to nominate and prioritize off-target sites. We tested the software with a BCL11A enhancer targeting guide RNA (gRNA) showing promise in clinical trials for sickle cell disease and ß-thalassemia and found that the top candidate off-target is produced by an allele common in African-ancestry populations (MAF 4.5%) that introduces a protospacer adjacent motif (PAM) sequence. We validated that SpCas9 generates strictly allele-specific indels and pericentric inversions in CD34+ hematopoietic stem and progenitor cells (HSPCs), although high-fidelity Cas9 mitigates this off-target. This report illustrates how genetic variants should be considered as modifiers of gene editing outcomes. We expect that variant-aware off-target assessment will become integral to therapeutic genome editing evaluation and provide a powerful approach for comprehensive off-target nomination.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Hematopoietic Stem Cells , INDEL Mutation , RNA, Guide, CRISPR-Cas Systems
7.
Nat Commun ; 13(1): 437, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064134

ABSTRACT

Analysis of off-target editing is an important aspect of the development of safe nuclease-based genome editing therapeutics. in vivo assessment of nuclease off-target activity has primarily been indirect (based on discovery in vitro, in cells or via computational prediction) or through ChIP-based detection of double-strand break (DSB) DNA repair factors, which can be cumbersome. Herein we describe GUIDE-tag, which enables one-step, off-target genome editing analysis in mouse liver and lung. The GUIDE-tag system utilizes tethering between the Cas9 nuclease and the DNA donor to increase the capture rate of nuclease-mediated DSBs and UMI incorporation via Tn5 tagmentation to avoid PCR bias. These components can be delivered as SpyCas9-mSA ribonucleoprotein complexes and biotin-dsDNA donor for in vivo editing analysis. GUIDE-tag enables detection of off-target sites where editing rates are ≥ 0.2%. UDiTaS analysis utilizing the same tagmented genomic DNA detects low frequency translocation events with off-target sites and large deletions in vivo. The SpyCas9-mSA and biotin-dsDNA system provides a method to capture DSB loci in vivo in a variety of tissues with a workflow that is amenable to analysis of gross genomic alterations that are associated with genome editing.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , RNA, Guide, Kinetoplastida/genetics , Animals , Base Sequence , Biotin/metabolism , Biotinylation , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , DNA/metabolism , Genes, Reporter , Genome , Liver/metabolism , Lung/metabolism , Mice , Ribonucleoproteins/metabolism
8.
Brain ; 145(2): 655-669, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34410345

ABSTRACT

GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal ß-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral (AAV) vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline ß-galactosidase was intravenously administered at 1.5×1013 vector genomes/kg body weight to six GM1 cats at ∼1 month of age. The animals were divided into two cohorts: (i) a long-term group, which was followed to humane end point; and (ii) a short-term group, which was analysed 16 weeks post-treatment. Clinical assessments included neurological exams, CSF and urine biomarkers, and 7 T MRI and magentic resonance spectroscopy (MRS). Post-mortem analysis included ß-galactosidase and virus distribution, histological analysis and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurological function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. CSF biomarkers were normalized, indicating decreased CNS cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. MRI and MRS showed partial preservation of the brain in treated animals, which was supported by post-mortem histological evaluation. ß-Galactosidase activity was increased throughout the CNS, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and CSF. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal ß-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of ß-galactosidase activity in the CNS and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. These data support the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.


Subject(s)
Gangliosidosis, GM1 , Neurodegenerative Diseases , Animals , Biomarkers , Cats , Dependovirus/genetics , G(M1) Ganglioside/therapeutic use , Gangliosides , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Gangliosidosis, GM1/therapy , Genetic Therapy/methods , Humans , Quality of Life , Tissue Distribution , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
9.
GEN Biotechnol ; 1(3): 271-284, 2022 Jun.
Article in English | MEDLINE | ID: mdl-38405215

ABSTRACT

Type V CRISPR-Cas12a systems are an attractive Cas9-alternative nuclease platform for specific genome editing applications. However, previous studies demonstrate that there is a gap in overall activity between Cas12a and Cas9 in primary cells.1 Here we describe optimization to the NLS composition and architecture of Cas12a to facilitate highly efficient targeted mutagenesis in human transformed cell lines (HEK293T, Jurkat, and K562 cells) and primary cells (NK cells and CD34+ HSPCs), regardless of Cas12a ortholog. Our 3xNLS Cas12a architecture resulted in the most robust editing platform. The improved editing activity of Cas12a in both NK cells and CD34+ HSPCs resulted in pronounced phenotypic changes associated with target gene editing. Lastly, we demonstrated that optimization of the NLS composition and architecture of Cas12a did not increase editing at potential off-target sites in HEK293T or CD34+ HSPCs. Our new Cas12a NLS variant provides an improved nuclease platform for therapeutic genome editing.

10.
Nat Commun ; 12(1): 6931, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836963

ABSTRACT

Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.


Subject(s)
Adipocytes, Brown/transplantation , CRISPR-Cas Systems/genetics , Glucose Intolerance/therapy , Obesity/therapy , Thermogenesis/genetics , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adult Stem Cells/physiology , Animals , Cell Culture Techniques/methods , Cell Differentiation , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Gene Editing/methods , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Humans , Lipid Metabolism/genetics , Male , Mice , Nuclear Receptor Interacting Protein 1/genetics , Nuclear Receptor Interacting Protein 1/metabolism , Obesity/complications , Obesity/metabolism , RNA, Guide, Kinetoplastida/genetics , Subcutaneous Fat/cytology
11.
Nat Commun ; 12(1): 6267, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725353

ABSTRACT

Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Dependovirus/genetics , Gene Editing/methods , Genetic Vectors/genetics , Mucopolysaccharidosis II/genetics , Recombinational DNA Repair , Tyrosinemias/genetics , Animals , CRISPR-Associated Protein 9/genetics , Dependovirus/metabolism , Female , Genetic Therapy , Genetic Vectors/metabolism , Humans , Male , Mice , Mucopolysaccharidosis II/therapy , Tyrosinemias/therapy
12.
Hum Gene Ther ; 29(3): 312-326, 2018 03.
Article in English | MEDLINE | ID: mdl-28922945

ABSTRACT

Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and ß subunits separately (TSD α + ß) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + ß sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + ß), and ganglioside clearance was most widespread in the TSD α + ß high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.


Subject(s)
Dependovirus , Genetic Therapy , Tay-Sachs Disease/therapy , beta-Hexosaminidase alpha Chain/biosynthesis , beta-Hexosaminidase beta Chain/biosynthesis , Animals , Brain/diagnostic imaging , Brain/enzymology , Disease Models, Animal , Echocardiography , Humans , Magnetic Resonance Imaging , Microglia/enzymology , Sheep , Tay-Sachs Disease/diagnostic imaging , Tay-Sachs Disease/enzymology , Tay-Sachs Disease/genetics , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase beta Chain/genetics
13.
Hum Gene Ther ; 28(6): 510-522, 2017 06.
Article in English | MEDLINE | ID: mdl-28132521

ABSTRACT

GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in ß-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or ß-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and ß-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/ß developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/ß, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/ß intracranial injection among different species, despite encoding for self-proteins.


Subject(s)
Dependovirus/genetics , Dyskinesias/etiology , Gangliosidoses, GM2/therapy , Genetic Vectors/adverse effects , Necrosis/etiology , Neurons/metabolism , beta-N-Acetylhexosaminidases/genetics , Animals , Apathy , Dependovirus/metabolism , Disease Models, Animal , Dyskinesias/genetics , Dyskinesias/metabolism , Dyskinesias/pathology , Female , Gangliosidoses, GM2/genetics , Gangliosidoses, GM2/metabolism , Gangliosidoses, GM2/pathology , Gene Expression , Genetic Therapy/methods , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Gray Matter/metabolism , Gray Matter/pathology , Injections, Intraventricular , Macaca fascicularis , Male , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology , Neurons/pathology , Protein Subunits/adverse effects , Protein Subunits/genetics , Protein Subunits/metabolism , Thalamus/metabolism , Thalamus/pathology , Transgenes , White Matter/metabolism , White Matter/pathology , beta-N-Acetylhexosaminidases/adverse effects , beta-N-Acetylhexosaminidases/metabolism
14.
Mol Ther ; 24(7): 1247-57, 2016 08.
Article in English | MEDLINE | ID: mdl-27117222

ABSTRACT

Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, ß-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.


Subject(s)
Capsid Proteins/genetics , Central Nervous System/metabolism , Dependovirus/physiology , Genetic Vectors/genetics , Muscles/metabolism , Transduction, Genetic , Viral Tropism , Animals , Capsid Proteins/chemistry , Dependovirus/classification , Gene Expression , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Genetic Vectors/administration & dosage , Humans , Mice , Models, Molecular , Protein Conformation , Transgenes
15.
Sci Transl Med ; 6(231): 231ra48, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24718858

ABSTRACT

Progressive debilitating neurological defects characterize feline G(M1) gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal ß-galactosidase. No effective therapy exists for affected children, who often die before age 5 years. An adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of G(M1) gangliosidosis. Gene therapy normalized ß-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated G(M1) animals was >38 months, compared to 8 months for untreated animals. Seven of the eight treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the G(M1) gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder.


Subject(s)
Brain/pathology , Genetic Therapy , Nervous System Diseases/therapy , Animals , Breeding , Cats , Dependovirus/metabolism , Disease Models, Animal , Disease Progression , Female , Humans , Lysosomes/enzymology , Magnetic Resonance Imaging , Male , Organ Specificity , Survival Analysis , beta-Galactosidase/genetics , beta-Galactosidase/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...