Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (204)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38372398

ABSTRACT

Cell patterning, allowing precise control of cell positioning, presents a unique advantage in the study of cell behavior. In this protocol, a cell patterning strategy based on the Magnetic-Archimedes (Mag-Arch) effect is introduced. This approach enables precise control of cell distribution without the use of ink materials or labeling particles. By introducing a paramagnetic reagent to enhance the magnetic susceptibility of the cell culture medium, cells are repelled by magnets and arrange themselves into a pattern complementary to the magnet sets positioned beneath the microfluidic substrate. In this article, detailed procedures for cell patterning using the Mag-Arch-based strategy are provided. Methods for patterning single-cell types as well as multiple cell types for co-culture experiments are offered. Additionally, comprehensive instructions for fabricating microfluidic devices containing channels for cell patterning are provided. Achieving this feature using parallel methods is challenging but can be done in a simplified and cost-effective manner. Employing Mag-Arch-based cell patterning equips researchers with a powerful tool for in vitro research.


Subject(s)
Magnetics , Microfluidics , Coculture Techniques , Indicators and Reagents , Magnetic Phenomena
2.
Nat Commun ; 15(1): 557, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228638

ABSTRACT

Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Mice , Animals , Aortic Valve/metabolism , Aortic Valve Stenosis/drug therapy , Osteogenesis , Calcinosis/drug therapy , Calcinosis/metabolism , Cells, Cultured , Magnetic Phenomena
3.
ACS Nano ; 17(13): 12072-12086, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37363813

ABSTRACT

Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.


Subject(s)
Cell Culture Techniques , Ink , Tissue Engineering/methods , Cell Communication , Microfluidic Analytical Techniques , Coculture Techniques , Cell Movement , Magnetics , Humans , Cell Culture Techniques/methods
4.
Cardiol J ; 30(2): 286-296, 2023.
Article in English | MEDLINE | ID: mdl-36036671

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is the leading cause of death for patients with cardiovascular disease (CVD). Although researchers have made substantial efforts to elucidate its pathogenesis, the molecular mechanisms underlying AMI remain unknown. The aim of this study was to use proteomics to identify differentially expressed proteins (DEPs) and the possible biological functions and metabolic pathways related to coronary blood microparticles (MPs) in patients with AMI and stable coronary artery disease (SCAD); this study will allow for the identification of individuals at risk of acute thrombosis. METHODS: The study was performed on 5 AMI patients and 5 SCAD patients. DEPs were identified, and Gene Ontology (GO) enrichment and KEGG pathway enrichment analyzes were performed to determine the relative abundance and biological function of the significant DEPs that were identified in the present study. RESULTS: The current analysis identified 198 DEPs in the coronary blood of AMI patients and SCAD patients, including 85 proteins that were significantly upregulated and 113 proteins that were significantly downregulated. GO enrichment analysis demonstrated that GDP binding and GTP binding were enriched in molecular function. Similarly, KEGG pathway enrichment analysis revealed that the identified proteins were involved in pantothenate and coenzyme A biosynthesis, starch and sucrose metabolism, and the AMPK signalling pathway. CONCLUSIONS: The proteome of coronary MPs differs between patients with AMI and patients with SCAD. In summary, the GO terms and KEGG pathways enriched by the DEPs may reflect the possible molecular mechanisms underlying the pathogenesis of acute thrombosis in patients with AMI.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , Proteomics , Myocardial Infarction/genetics , Coronary Artery Disease/diagnosis , Heart
5.
Adv Healthc Mater ; 11(8): e2102059, 2022 04.
Article in English | MEDLINE | ID: mdl-34969157

ABSTRACT

Heart valves have extraordinary fatigue resistance which beat ≈3 billion times in a lifetime. Bioprosthetic heart valves (BHVs) made from fixed heteroplasm that are incrementally used in heart valve replacement fail to sustain the expected durability due to thrombosis, poor endothelialization, inflammation, calcification, and especially mechanical damage induced biocompatibility change. No effective strategy has been reported to conserve the biological properties of BHV after long-term fatigue test. Here, a double-network tough hydrogel is introduced, which interpenetrate and anchor into the matrix of decellularized porcine pericardium (dCell-PP) to form robust and stable conformal coatings and reduce immunogenicity. The ionic crosslinked hyaluronic acid (HA) network mimics the glycocalyx on endothelium which improves antithrombosis and accelerates endothelialization; the chemical crosslinked hydrophilic polyacrylamide (PAAm) network further enhances antifouling properties and strengthens the shielding hydrogels and their interaction with dCell-PP. In vitro and rabbit ex vivo shunt assay demonstrate great hemocompatibility of polyacrylamide/HA hydrogel hybrid PP (P/H-PP). Cell experiments and rat subcutaneous implantation confirm satisfactory endothelialization, biocompatibility, and anticalcification properties. For hydrodynamic experiment, P/H-PP gains full mark at different flow conditions and sustains excellent biomechanical and biological properties after 200 000 000 cycles. P/H double-network hydrogel armoring dCell-PP is a promising progress to extend BHV durability for clinical implantation therapy.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Animals , Heart Valves , Hydrogels/chemistry , Hydrogels/pharmacology , Pericardium/chemistry , Rabbits , Rats , Swine
6.
Mater Sci Eng C Mater Biol Appl ; 128: 112337, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474888

ABSTRACT

An aging population and a rapid increase in the incidence of degenerative valve diseases have led to greater use of bioprosthetic heart valves (BHVs). The durability of glutaraldehyde cross-linked bioprostheses currently available for clinical use is poor due to calcification, coagulation, and degradation. Decellularization can partially reduce calcification by removal of xenogenic cells, but can also lead to thrombosis, which can be addressed by further surface modification. The natural sulfated polysaccharide ulvan possesses antithrombotic and anti-inflammatory properties, and can behave as a heparinoid to immobilize proteins through their heparin binding sites. VE-cadherin antibody and the Arg-Glu-Asp-Val (REDV) peptide can facilitate selective endothelial cell attachment, adhesion and proliferation. In this study, we functionalized decellularized porcine pericardium (DPP) with ulvan, REDV, and VE-cadherin antibody (U-R-VE). Ulvan was covalently modified to act as a protective coating and spacer for VE-cadherin antibody, and to immobilize REDV. In in vitro tests, we found that functionalization significantly and selectively promoted adhesion and growth of endothelial cells while reducing platelet adhesion, inflammation, and in vitro calcification of DPPs. In an in vivo subdermal implantation model, U-R-VE modified DPP exhibited greater endothelialization potential and biocompatibility compared with unmodified pericardium. Thus, U-R-VE modification provides a promising solution to the problem of preparing BHVs with enhanced endothelialization potential.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Animals , Antigens, CD , Cadherins , Endothelial Cells , Heart Valves , Polysaccharides , Swine
7.
Ann Palliat Med ; 9(4): 1564-1570, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32692196

ABSTRACT

BACKGROUND: Mounting evidence suggests that endothelial cell-derived microparticles (EMPs) and red blood cell-derived microparticles (RMPs), which have procoagulant and vasoconstriction effects, are involved in the development of vascular acute cardiovascular events. The aim of this study was to analyze the circulating levels of EMPs and RMPs in patients with acute myocardial infarction (AMI), and to explore the correlations between EMPs and RMPs and the severity of coronary artery disease. METHODS: Plasma samples from 110 patients with AMI and 57 non-coronary artery disease group (nonCAD) were collected in the present study. The flow cytometry was used to measure the EMPs (CD31) and RMPs (CD235a) qualitatively and quantitatively. RESULTS: The levels of EMPs and RMPs in the AMI group were higher than that in the Non-CAD group, yet no significant difference was found between STEMI and non-STEMI subjects. The levels of EMPs and RMPs in multi-vessel were higher than in the single-vessel l disease. In the Thrombolysis in Myocardial Infarction (TIMI) risk assessment, the levels of EMPs in the high-risk group were higher than that in both intermediate- and low-risk group. The low-risk group had the lowest EMP levels, the difference between the groups being statistically significant (P=0.001). No significant difference in RMP levels was noted upon TIMI stratification. According to the ROC curve analysis, the areas under the curve (AUC) of EMPs and RMPs were 0.706 and 0.668, respectively. CONCLUSIONS: The circulating levels of EMPs and RMPs in patients with AMI are elevated, and the level of EMPs is related to the degree of coronary artery disease and the prognosis risk. The EMPs are more likely to be potential biomarkers than RMPs to provide diagnostic value for AMI.


Subject(s)
Cell-Derived Microparticles , Myocardial Infarction , Biomarkers , China , Erythrocytes , Humans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...